Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00612

Overview on Ceramic and Nanostructured Materials for Solid Oxide Fuel Cells (SOFCs) Working at Different Temperatures  

Priya, S. Dharani (Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed to be University))
Selvakumar, A. Immanuel (Department of Electrical and Electronics Engineering, Karunya Institute of Technology and Sciences (Deemed to be University))
Nesaraj, A. Samson (Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed to be University))
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.2, 2020 , pp. 99-116 More about this Journal
Abstract
The article provides information on ceramic / nanostructured materials which are suitable for solid oxide fuel cells (SOFCs) working between 500 to 1000℃. However, low temperature solid oxide fuel cells LTSOFCs working at less than 600℃ are being developed now-a-days with suitable new materials and are globally explored as the "future energy conversion devices". The LTSOFCs device has emerged as a novel technology especially for stationary power generation, portable and transportation applications. Operating SOFC at low temperature (i.e. < 600℃) with higher efficiency is a bigger challenge for the scientific community since in low temperature regions, the efficiency might be less and the components might have exhibited lower catalytic activity which may result in poor cell performance. Employing new and novel nanoscale ceramic materials and composites may improve the SOFC performance at low temperature ranges is most focused now-a-days. This review article focuses on the overview of various ceramic and nanostructured materials and components applicable for SOFC devices reported by different researchers across the globe. More importance is given for the nanostructured materials and components developed for LTSOFC technology so far.
Keywords
Solid Oxide Fuel Cells; Low Temperature; Nanostructured Ceramic Materials; Components; Review;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Chen, S. Pang X. Shen, X. Jiang, W. Wang, RSC Adv., 2016, 6, 13829-13836.   DOI
2 S. Yoo, J.Y. Shin, G. Kim, J. Electrochem. Soc., 2011, 158, B632-B638.   DOI
3 Z. Zhu, C. Zhou, W. Zhou, N.Yang, Materials, 2019, 12, 777 (1-11).   DOI
4 G. Abbas, R. Raza, M. Ashfaq, M. A.Chaudhry, A. Khan, I. Ahmad, B. Zhu, Int. J. Energy Res., 2014, 38, 518?523.   DOI
5 M. Rafique, H. Nawaz, M.S. Rafique, M.B. Tahir, G. Nabi, N.R. Khalid, Int. J. Energy Res., 2019, 43, 2423-2446.   DOI
6 A. Faes, A.H. Wyser, A. Zryd, J. Van herle, Membranes, 2012, 2, 585-664.   DOI
7 X. Dong, S. Ma, K. Huang, F. Chen, Int. J. Hydrogen Energy, 2012, 37, 10866-10873.   DOI
8 S. Tao, J.T.S. Irvine, Chem. Rec., 2004, 4, 83-95.   DOI
9 C. C. Chao, C. M. Hsu, Y. Cui, F. B. Prinz, ACS Nano, 2011, 5, 5692-5696.   DOI
10 T. Baquero, J. Escobar, J. Frade, D. Hotza, Ceram. Int., 2013, 36, 8279-8285.
11 A. Sinha, D. N. Miller, J.T.S. Irvine, J. Mater. Chem., 2016, 4, 11117-11123.   DOI
12 S. Futamura, Y. Tachikawa, J. Matsuda, S.M. Lyth, Y. Shiratori, S. Taniquchi, K. Sasaki, ECS Trans., 2017, 78, 1179-1187.   DOI
13 E.K. Park, J.W. Yun, J. Electrochem. Sci. Technol., 2016, 7, 33-40.   DOI
14 A.M. Hussain, K.J. Pan, Y. L. Huang, I.A. Robinson, C. Gore, E.D. Wachsman, ACS Appl. Mater. Interfaces, 2018, 10, 36075-36081.   DOI
15 E. Lay, G. Gauthier, S. Rosini, C. Savaniu, J.T.S. Irvine, Solid State Ionics, 2008, 179, 27-32.
16 K. Yamamoto, T. Hashishin, M. Matsuda, N. Qiu, Z. Tan, S. Ohara, Nanoenergy, 2014, 6, 103-108.
17 P. Blennow, K. K. Hansen, L. R. Wallenberg, M. Mogensen, ECS Trans., 2008, 13, 181-194.
18 T. Dias, D.P.F.D. Souza, Revista Materia, 2017, 22.
19 Z. Liu, M. Liu, L. Nie, M. Liu, Int. J. Hydrogen Energy, 2013, 38, 1082-1087.   DOI
20 J. Zhou, L. Zhang, C. Liu, J. Pu, Q. Liu, C. Zhang, S. H. Chan, Int. J. Hydrogen Energy, 2019, 44, 21110-21114.   DOI
21 M. R. Somalua, A. Muchtara, W. Ramli W. Dauda, N. P. Brandon, Renew. Sus. Energ. Rev., 2017, 75, 426-439.   DOI
22 S. U. Rehman, A. Shaur, R.H. Song, T. H. Lim, J. E. Hong , S.J. Park, S.B. Lee, J. Power Sources, 2019, 429, 97-104.   DOI
23 Z. Akbari, A. Babaei, A. Ataie, J. Ultrafine Grained Nanostruct., 2018, 51, 53-59.
24 O. Kesler, Mater. Sci. Forum, 2007, 539, 1385-1390.   DOI
25 C. Hwang, C. H. Tsai, C. H. Lo, C.H. Sun, J. Power Sources, 2008, 180, 132-142.   DOI
26 D. Stover, D. Hathiramani, R. Va$\ss$en, R. J.Damani, Surf. Coat. Tech., 2006, 201, 2002-2005.   DOI
27 S. U. Rehman, R.H. Song, T. H. Lim, S. J. Park, J. E. Hong, J.W. Lee, S. B. Lee, J. Mater. Chem. A, 2018, 6, 6987-6996.   DOI
28 T. T. Pham, H. P. Tu, T. D. Dao, T.D. To, D.C. T. Doan, M.C. Dang, Adv. Nat. Sci.- Nanosci., 2019, 10, 1.
29 I. Garbayo, V. Esposito, S. Sanna, A. Morata, D. Pla, L. Fonseca and N. Sabate, J. Power Sources, 2014, 248, 1042-1049.   DOI
30 G. Acres, J. Power Sources, 2001, 100, 60-66.   DOI
31 A.B. Stambouli, E. Traversa, Renew. Sustain Energy Rev., 2002, 6, 433-455.   DOI
32 B. Zhu, L. Fan, P. Lund, App. Energy, 2013, 106, 163-175.   DOI
33 M. Irshad, K. Siraj, R. Raza, A. Ali, P. Tiwari, B. Zhu, A. Rafique, A. Ali, M. K. Ullah, A. Usman, Appl. Sci., 2016, 6, 75(1-23).   DOI
34 D. J.L. Brett, A. Atkinson, N. P. Brandon, S. J. Skinner, Chem. Soc. Rev., 2008, 37, 1568-1578.   DOI
35 S.C. Singhal, Solid State Ionics, 2000, 135, 305-313.   DOI
36 R. M. Ormerod, Chem. Soc. Rev., 2002, 32, 17-28.   DOI
37 M.H. Zhou, A.Ahmad, Sens. Actuators, 2008, B129, 285-291.
38 Y. Liu, X. Qin, H. Xin, C. Song, J. Eur. Ceram. Soc., 2013, 33, 2625-2631.   DOI
39 K. Boobalan, A. Varun, R. Vijayaraghavan, K. Chidambaram, U. Kamachi Mudali, Ceram. Int., 2014, 40, 5781-5786.   DOI
40 G. Abbas, R. Raza, M. A. Khan, I. Ahmad, M.A. Chaudhry, T. A. Sherazi, M. Mohsin, M. Ahmad, B. Zhu, Int. J. Hydrogen Energy, 2015, 40, 891-897.   DOI
41 X. Dong, Ceramic-Based Anodes for Solid Oxide Fuel Cells (Doctoral dissertation), University of South Carolina, 2012.
42 C. Fu, S. H. Chan, Q. Liu, X. Ge, G Pasciak, Int. J. Hydrogen Energy, 2010, 35, 301-307.   DOI
43 R. Razaa, X.Wang, Y. Ma, B, Zhu, J. Power Sources, 2010, 195, 8067-8070.   DOI
44 G. Abbas, M. A. Chaudhry, R. Raza, M. Singh, Q. Liu, H. Qin, B. Zhu, Nanosci. Nanotechn. Let., 2012, 4, 389-393.   DOI
45 G. Xiao, S. Wang, Y. Lin, Z. Yang, M. Han, F. Chena, J. Electrochem. Soc., 2014, 161, 305-310.
46 T. Matsui, T. Kosaka, M. Inaba, A. Mineshige, Z. Ogumi, Solid State Ionics, 2005, 176(7), 663-668.   DOI
47 J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, M. K. Danquah, Beilstein J. Nanotechnol., 2018, 9, 1050-1074.   DOI
48 G. Dong, C.Yang, F. He, Y. Jiang, C. Ren, Y.Gan, M. Lee, X. Xue, RSC Advances, 2017, 7, 22649-22661.   DOI
49 L. Fan, B. Zhu, P.C. Su, C. He, Nano Energy, 2017, 45, 148-176.   DOI
50 J. Ding, J. Liu, W. Guo, J. Alloys Compd., 2009, 480, 286-290.   DOI
51 N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Prog. Mater. Sci., 2015, 72, 141-337.   DOI
52 P. Koteswararao, M. B. Suresh, B. N. Wani, P. V. B. Rao, P. Varalakshimi, Int J Sci Res Sci Eng Technol, 2017, 3, 342-346.
53 C.C.T. Yang, W.C.J. Wei, J. Am. Ceram. Soc., 2004, 87, 1110-1116.   DOI
54 T.L. Nguyen, K. Kobayashi, T. Honda, Y. Iimura, K.Kato, A. Negishi, K. Nozaki, F. Tappero, K. Sasaki, H. Shirahama, K. Ota, M. Dokiya, T. Kato, Solid State Ionics, 2004, 174, 163-174.   DOI
55 S.I. Ahmad, Int. J. Nano Rech., 2018, 1, 11-13.
56 X. Xin, L. Liu, Y. Liu, Q. Zhu, Int. J. Hydrogen Energy, 2018, 43, 23036-23040.   DOI
57 Z. Gao, L. V. Mogni, E. C. Miller, J. G. Railsback, S. A. Barnett, Energy Environ. Sci., 2016, 9, 1602-1644.   DOI
58 Y. Meng, J. Gao, Z. Zhao, J. Amoroso, J. Tong, K. S. Brinkman, J. Mater. Sci., 2019, 54(13), 9291-9312.   DOI
59 S.P. S. Shaikh, A. Muchtar, M. R. Somalu, Renew. Sustain. Energy Rev., 2015, 51, 1-8.   DOI
60 E. A. R. Assirey, Saudi Pharmaceutical Journal, 2019, 27(16), pp. 817-829.   DOI
61 K. Z. Fund, Advanced materials for high temperature solid oxide fuel cells (SOFCs), in: P.K. Shen, C.Y. Wang, S. P. Jiang, X. Sun, J. Zhand (Eds.), Electrochemical Energy: Advanced Materials and Technologies, CRC Press, 2015, pp. 295-305.
62 B.C.H. Steele, Solid State Ionics, 2000, 134(1-2), 3-20.   DOI
63 W. H. Kan, A. J. Samson, V. Thangadurai, J. Mater. Chem. A, 2016, 4, 17913-17932.   DOI
64 S. Futamura, A. Muramoto, Y. Tachikawa, J. Matsuda, S. M. Lyth, Y. Shiratori, S. Taniguchi, K. Sasaki, Int. J. Hydrog. Energy, 2019, 44(6), 8502-8518.   DOI
65 Z. Du, H. Zhao, Y. Shen, L. Wang, M. Fang, K. Swierczek, K. Zheng, J. Mater. Chem. A, 2014, 2, 10290-10299.   DOI
66 A. Kostopoulou, E. Kymakis , E. Stratakis, J. Mater. Chem. A, 2018, 6, 9765-9798.   DOI
67 W. Zhou, Z. Shao, R. Ran, W. Jin, N. Xu, Chem.Commun., 2008, 44, 5791-5793.
68 T. Ishihara, J. Yan, H. Matsumoto, ECS Trans., 2007, 7, 435-442.
69 A. A. Yaremchenko, V. V. Kharton, E. N. Naumovich, A. A. Vecher, J. Solid State Electrochem., 1998, 2, 146-149.   DOI
70 T. Ishihara, H. Matsuda, Y. Takita, J. Am. Chem Soc., 1994, 116, 801-803.   DOI
71 M. S. Arshad, R. Raza, M. A. Ahmad, G. Abbas, A. Ali, A. Rafique, M. K. Ullah, S. Rauf, M. I. Asghar, N. Mushtaq, S. Atiq, S. Naseem, Ceram. Int., 2018, 44, 170-174.   DOI
72 P Koteswararao, B.M. Suresh, B.N. Wani, P.V.B.Rao, J. Powder Metall. Min., 2017, 6, 1-4.
73 N. Singh, O. Parkash, D. Kumar, Ionics, 2013, 19, 165-171.   DOI
74 Z. Gao, R. Raza, B. Zhu, Z. Mao, C. Wang, Z. Liu, Int. J. Hydrogen Energy, 2011, 36, 3984-3988.   DOI
75 K. Kannan, D. Radhika, A. S. Nesaraj, M. W. Ahmed, R. Namita, Mater. Res. Innov., 2019.
76 Y. J. Jin, Z. G. Liu, Z.Y. Ding, G. Cao, A. Henniche, H. B. Zhang, X.Y. Zhen, J. H. Ouyang, ElectrochimActa, 2018, 283, 291-299.   DOI
77 C. Xia, Y. Cai, B. Wang, M. Afzal, W. Zhang, A. Soltaninazarlou, B. Zhu, J. Power Sources, 2017, 342, 779-786.   DOI
78 S. V. Fedorov, M. S. Sedov, V. V. Belousov, ACS Appl. Energy, 2019, 29, 6860-6865.
79 E. D. Wachsman, K.T. Lee, Science, 2011, 334, 935-939.   DOI
80 S. Yin, Y. Zeng, C. Li, X. Chen, Z. Ye, ACS Appl. Mater. Interfaces, 2013, 5, 12876-12886.   DOI
81 Y. Zhang, R. Knibbe, J. Sunarso, Y. Zhong, W. Zhou, Z. Shao, Z. Zhu, Adv.Mater, 2017, 29, 1700132.   DOI
82 N. K. Singh, P. Singh, D. Kumar, O. Parkash, Ionics, 2012, 18, 127-134.   DOI
83 Y. Cui, R. Shi, J. Liu, H. Wang, H. Li, Materials (Basel), 2018, 11, 1824 (1-10).   DOI
84 Z. Gong, W. Sun, J. Cao, D. Shan, Y. Wu, W. Liu, Electrochim. Acta, 2017, 228, 226-232.   DOI
85 N. Singh, N. K. Singh, D. Kumar, O. Parkash, J. Alloy Compd., 2012, 519, 129-135.   DOI
86 K. Tanwar, N. Jaiswal, D. Kumar, O. Parkash, J. Alloy Compd., 2016, 684, 683-690.   DOI
87 F. Liu, J. Dang, J. Hou, J. Qian, Z. Zhu, Z. Wang, W. Liu, J. Alloy Compd., 2015, 639, 252-258.   DOI
88 N. Radenahmad, A. Afif, J. I. Lee, M. Saqib, J.Y. Park, J. Zaini, A. K. Azad, ECS Trans., 2019, 97, 1.
89 C. Sun, R. Hui, J. Roller, J. Solid State Electrochem., 2010, 14, 1125-1144.   DOI
90 W. Kong, M. Zhang, Z. Han, Q. Zhang, Appl. Sci., 2019, 9, 493 (2-11).   DOI
91 R. O'Hayre, D. M. Barnett, F. B. Prinz, J. Electrochem. Soc., 2005, 2, A439-A444.
92 P.S. Jorgensen, S.L. Ebbehoj, A. Hauch, J. Power Sources, 2015, 279, 686-693.   DOI
93 R. Ebrahim, M. Yeleuov, A. Issova, S. Tokmoldin, A. Ignatiev, Nanoscale Res. Lett., 2014, 9, 286 (1-5).   DOI
94 V. M. Janardhanan, V. Heuveline, O. Deutschmann, J. Power Sources, 2008, 178, 368-372.   DOI
95 X. Lu, T.M.M. Heenan, J.J. Bailey, T. Li, K. Li, D.J.L. Brett, P. R. Shearing, J. Power Sources, 2017, 365, 210-219.   DOI
96 J. Wu, X. Liu, J. Mater. Sci.& Tech., 2010, 26, 293-305.   DOI
97 J. W. Fergus, Solid State Ionics, 2004, 171, 1-15.   DOI
98 T. Nakamura, G. Petzow, L. J. Gauckler, Mater. Res. Bull., 1979, 14, 649-659.   DOI
99 G. Abbas, M. A. Ahmad, R. Raza, M.H. Aziz, M. A. Khan, F. Hussain, T.A. Sherazi, Mat. Lett., 2019, 238, 179-182.   DOI
100 F. Jin, H. Xu, W. Long, Y. Shen, T. He, J. Power Sources, 2013, 243, 10-18.   DOI
101 S. Afroze, A.H. Karim, Q. Cheok, S. Eriksson, A.K. Azad, Front. Energy, 2019, 13, 770-797.   DOI
102 F. Wang, D. Chen, Zongping Shao, J. Power Sources, 2012, 216, 208-215.   DOI
103 Y.T. Kim, N. Shikazono, Solid State Ionics, 2017, 309, 77-85.   DOI
104 Y. Ling, L.Zhao, B.Lin, Y. Dong, X. Zhang, G. Meng, X. Liu, Int. J. Hydrogen Energy, 2010, 35, 6905-6910.   DOI
105 X. Hu, M. Li, Y. Xie, Y. Yang, X. Wu, C. Xia, ACS Appl. Mater. Interfaces, 2019, 11, 21593-21602.   DOI
106 S. Mulmi, V. Thangadurai, Chem. Commun., 2019, 55, 3713-3716.   DOI
107 S. Ryu, S. Lee, W. Jeong, A. Pandiyan, S.B.K. Moorthy, I. Chang, T. Park, S.W. Cha, Surf. Coatings Tech., 2019, 369, 265-268.   DOI
108 I.D. Aburto, F. Gracia, M.C.Lagrille, Fuel Cells, 2019, 19, 147-159.   DOI
109 L. Li, H. Yang, Z. Gao, Y. Zhang, F. Dong, G. Yang, M. Ni, Z. Lin, J. Mater. Chem. A., 2019, 7, 12343-12349.   DOI
110 X. Ding, X. Kong, H.Wu, Y. Zhu, J. Tang, Y. Zhong, Int. J. Hydrogen Energy, 2012, 37, 2546-2551.   DOI
111 S. Lu, X. Meng, Y. Ji, C. Fu, C. Sun, H. Zhao, J. Power Sources, 2010, 195, 8094-8096.   DOI
112 N. Zhou,Y. M. Yin, J. Li, L. Xu, Z.F. Ma, J. Power Sources, 2017, 340, 373-379.   DOI
113 Z. Yang, K. S. Weil, D. M. Paxton, J. W. Stevenson, J. Electrochem. Soc, 2003, 150, A1188-A1201.   DOI
114 X.Wang, Y. Ma, S. Li, B. Zhu, M. Muhammed, Int. J. Hydrogen Energy, 2012, 37, 19380-19387.   DOI
115 M. Xu, T. Li, M. Yang, M. Andersson, Sci. Bull., 2016, 61, 1333-1344.   DOI
116 W.J. Quadakkers, J. P. Abellan, V. Shemet, L. Singheiser, J. Mater. High. Temp., 2003, 20, 115-127.
117 A. S. Nesaraj, J. Sci. Ind. Res., 2010, 69, 169-176.
118 S. Fontana, R. Amendola, S. Chevalier, P. Piccardo, G. Caboche, M. Viviani, R. Molins, M. Sennour, J. Power Sources, 2007, 171, 652-662.   DOI
119 A.J. Majewski, A. Dhir, Mater. Renew. Sustain. Energy, 2018, 7, 16   DOI
120 Z. Yang, Int. Mater. Rev., 2008, 53, 39-54.   DOI
121 A. Ruangvittayanon, S. Kuharuangrong, Suranaree J. Sci. Technol., 2009, 319-323.
122 J.G.M. Furtado, R.N. Oliveira, Revista Materia, 2008, 13, 147-153.   DOI
123 W.Z. Zhu, M. Yan, J. Zheijian Univ. Sci., 2004, 5, 1471-1503.   DOI
124 A. Fernandes, T. Woudstra, A.V. Wijk, L. Verhoef, P.V. Aravind, App. Energy, 2016, 173, 13-28.   DOI
125 Y. Jiang, A.V. Virkar, J. Electrochem. Soc., 2001, 148(7), A706-A709.   DOI
126 G. Meng, C. Jiang, J. Ma, Q. Ma, X. Liu, J. Power Sources, 2007, 173, 189-193.   DOI
127 S. S. Hashim, F. Liang, W. Zhou, J. Sunarso, Chem.Electrochem., 2019, 6, 3549-3569.