• Title/Summary/Keyword: electrochemical DNA chip

Search Result 27, Processing Time 0.032 seconds

Genome Detection Using an DNA Chip Array and Non-labeling DNA (비수식화 바이오칩 및 유전자 검출)

  • Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.402-403
    • /
    • 2006
  • This research aims to develop the multiple channel electrochemical DNA chip using microfabrication technology. At first, we fabricated a high integration type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then target DNAs were hybridized and reacted. Cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. Therefore, it is able to detect a plural genes electrochemically after immobilization of a plural probe DNA and hybridization of non-labeling target DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF

SNP Detection Using Indicator-free DNA Chip (비수식화 DNA를 이용한 유전자 검출)

  • Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.410-411
    • /
    • 2006
  • High throughput analysis using a DNA chip microarray is powerful tool in the post genome era. Less labor-intensive and lower cost-performance is required. Thus, this paper aims to develop the multi-channel type label-free DNA chip and detect SNP (Single nucleotide polymorphisms). At first, we fabricated a high integrated type DNA chip array by lithography technology. Various probe DNAs were immobilized on the microelectrode array. We succeeded to discriminate of DNA hybridization between target DNA and mismatched DNA on microarray after immobilization of a various probe DNA and hybridization of label-free target DNA on. the electrodes simultaneously. This method is based on redox of an electrochemical ligand.

  • PDF

Genomic Detection using Electrochemical Method (전기화학적 방법에 의한 유전자의 검출)

  • Choi, Yong-Sung;Lee, Kyung-Sup;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.560-570
    • /
    • 2005
  • In this paper, a microelectrode away DNA chip was fabricated on glass slide using photolithography technology. Several probe DNAs consisting of mercaptohexyl moiety at their 5' end were immobilized on the gold electrodes by DNA arrayer utilizing the affinity between gold and sulfu. Then target DNAs were hybridized and reacted with Hoechst 33258, which is a DNA minor groove binder and electrochemically active dye. Cyclic voltammetry in 5mA ferricyanide/ferrocyanide solution at 100 mV/s confirmed the immobilization of probe DNA on the gold electrodes. Linear sweep voltammetry or cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. It was derived from Hoechst 33258 concentrated at the electrode surface through association with formed hybrid. It suggested that this DNA chip could recognize the sequence specific genes. It suggested that multichannel electrochemical DNA microarray is useful to develop a portable device for clinical gene diagnostic system.

A Study on Gene Detection using Non-labeling DNA

  • Choi Yong-Sung;Lee Kyung-Sup;Kwon Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.960-965
    • /
    • 2006
  • This research aims to develop the multiple channel electrochemical DNA chip using microfabrication technology. At first, we fabricated a high integration type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then target DNAs were hybridized and reacted. Cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. Therefore, it is able to detect a plural genes electrochemically after immobilization of a plural probe DNA and hybridization of non-labeling target DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

Detection of SNP Using Microelectrode Array Biochip (마이크로전극어레이형 바이오칩을 이용한 SNP의 검출)

  • Choi, Yong-Sung;Kwon, Young-Soo;Paek, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.845-848
    • /
    • 2004
  • High throughput analysis using a DNA chip microarray is powerful tool in the post genome era. Less labor-intensive and lower cost-performance is required. Thus, this paper aims to develop the multi-channel type label-free DNA chip and detect SNP (Single nucleotide polymorphisms). At first, we fabricated a high integrated type DNA chip array by lithography technology. Various probe DNAs were immobilized on the microelectrode array. We succeeded to discriminate of DNA hybridization between target DNA and mismatched DNA on microarray after immobilization of a various probe DNA and hybridization of label-free target DNA on the electrodes simultaneously. This method is based on redox of an electrochemical ligand.

  • PDF

High-risk Human Papillomavirus Genotype Detection by Electrochemical DNA Chip Method

  • Chansaenroj, Jira;Theamboonlers, Apiradee;Chinchai, Teeraporn;Junyangdikul, Pairoj;Swangvaree, Sukumarn;Karalak, Anant;Takahashi, Masayoshi;Nikaido, Masaru;Gemma, Nobuhiro;Poovorawan, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1151-1158
    • /
    • 2012
  • High-risk human papillomavirus (HPV) genotypes are the major cause of cervical cancer. Hence, HPV genotype detection is a helpful preventive measure to combat cervical cancer. Recently, several HPV detection methods have been developed, each with different sensitivities and specificities. The objective of this study was to compare HPV high risk genotype detection by an electrochemical DNA chip system, a line probe assay (INNO-LiPA) and sequencing of the L1, E1 regions. A total of 361 cervical smears with different cytological findings were subjected to polymerase chain reaction-sequencing and electrochemical DNA chip assessment. Multiple infections were found in 21.9% (79/361) of the specimens, most prevalently in 20-29-year olds while the highest prevalence of HPV infection was found in the 30-39-year age group. The most prevalent genotype was HPV 16 at 28.2% (138/489) followed by HPV 52 at 9.6% (47/489), with the other types occurring at less than 9.0%. The electrochemical DNA chip results were compared with INNO-LiPA and sequencing (E1 and L1 regions) based on random selection of 273 specimens. The results obtained by the three methods were in agreement except for three cases. Direct sequencing detected only one predominant genotype including low risk HPV genotypes. INNO-LiPA identified multiple infections with various specific genotypes including some unclassified-risk genotypes. The electrochemical DNA chip was highly accurate, suitable for detection of single and multiple infections, allowed rapid detection, was less time-consuming and was easier to perform when compared with the other methods. It is concluded that for clinical and epidemiological studies, all genotyping methods are perfectly suitable and provide comparable results.

Development of New Biochip and Genome Detection Using an Non-labeling Target DNA (차세대형 바이오칩의 개발 및 비수식화 표적 DNA를 이용한 유전자 검출)

  • Choi, Yong-Sung;Park, Dae-Hee;Kwon, Young-Soo;Kawai, Tomoji
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.51-53
    • /
    • 2002
  • This research aims to develop a multiple channel electrochemical DNA chip using micro-fabrication technology. At first, we fabricated a high integrated type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the sold electrodes. Then target DNAs were hybridized by an electrical force. Redox peak of cyclic-voltammogram showed a difference between target DNA and mismatched DNA in the anodic peak current. Therefore, it is able to detect a various genes electrochemically after immobilization of a various probe DNA and hybridization of label-free DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF

Electrochemical Gene Detection Using Microelectrode Array on a DNA Chip

  • Park, Yong-Sung;Kwon, Young-Soo;Park, Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.145-148
    • /
    • 2004
  • In this study, a DNA chip with a microelectrode array was fabricated using microfabrication technology. Several probe DNAs consisting of mercaptohexyl moiety at their 5' end were immobilized on the gold electrodes by a DNA arrayer. Then target DNAs were hybridized and reacted with Hoechst 33258, which is a DNA minor groove binder and electrochemically active dye. Linear sweep voltammetry or cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. It was derived from Hoechst 33258 and concentrated at the electrode surface through association with the formed hybrid. This suggested that this DNA chip could recognize the sequence specific genes.

Electrochemical Detection of Genes Using Microeledtrode Array DNA Chip (미소전극어에이형 DNA칩을 이용한 유전자의 전기화학적 검출)

  • Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2125-2127
    • /
    • 2004
  • In this paper, a DNA chip with a microelectrode array was fabricated using microfabrication technology. Several probe DNAs consisting of mercaptohexyl moiety at their 5 end were immobilized on the gold electrodes by DNA arrayer. Then target DNAs were hybridized and reacted with Hoechst 33258, which is a DNA minor groove binder and electrochemically active dye. Linear sweep voltammetry or cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. It was derived from Hoechst 33258 concentrated at the electrode surface through association with formed hybrid. It suggested that this DNA chip could recognize the sequence specific genes.

  • PDF

Comparison of Detection Sensitivity for Human Papillomavirus between Self-collected Vaginal Swabs and Physician-collected Cervical Swabs by Electrochemical DNA Chip

  • Nilyanimit, Pornjarim;Wanlapakorn, Nasamon;Niruthisard, Somchai;Takahashi, Masayoshi;Vongpunsawad, Sompong;Poovorawan, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10809-10812
    • /
    • 2015
  • Background: Human papillomavirus (HPV) DNA testing is an effective method to screen for precancerous changes in the cervix. Samples from self-collection rather than Pap smear can potentially be used to test for HPV as they are more acceptable and preferred for use in certain settings. The objective of this study was to compare HPV DNA testing from self-collected vaginal swabs and physician-collected cervical swabs. Materials and Methods: A total of 101 self-collected vaginal and physician-collected cervical swabs of known cytology from Thai women were tested by electrochemical DNA chip assay. The specimens were divided into 4 groups: 29 with normal cytology, 14 with atypical squamous cells of undetermined significance (ASCUS), 48 with low-grade squamous intraepithelial lesion (LSIL), and 10 with high-grade squamous intraepithelial lesion (HSIL). Results: Positive detection rates of HPV from self-collected swabs were similar to those from physician-collected swabs. Among specimens with abnormal cytology, HPV was found in 50% of self-collected swabs and 47.2% of physician-collected swabs. In specimens with normal cytology, 17.2% of self-collected swabs and 24.1% of physician-collected swabs were positive for HPV. Concordance was relatively high between results from self-collected and physician-collected samples. The most common HPV genotype detected was HPV 51. Conclusions: HPV DNA testing using self-collected swabs is a feasible alternative to encourage and increase screening for cervical cancer in a population who might otherwise avoid this important preventive examination due to embarrassment, discomfort, and anxiety.