• Title/Summary/Keyword: electro deposition process

Search Result 87, Processing Time 0.043 seconds

Characteristics analysis of Piezoelectric Thin Film SAW filter using Mg-doped GaN/Sapphire Structure (Mg-Doped GaN/Sapphire 구조로 제작된 압전 박막 SAW 필터의 특성분석)

  • 장철영;정은자;정영철;최현철;이정희;이용현
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.759-762
    • /
    • 2003
  • The epitaxially grown Mg-doped GaN thin film was prepared by MOCVD (Metal Organic Chemical Vapor Deposition) for a SAW(Surface Acoustic Wave) filter. Mg-doped GaN thin film had enough properties for a SAW filter which include crystallinity and morphology. The surface morphology and crystalline of the Mg-doped GaN thin films were characterized using AFM and an X-ray rocking curve. The SAW filter, which was fabricated by lift-off process and frequency response, was measured by HP 8753C network analyzer. Center frequency was 96.687 MHz and SAW velocity was 5801 m/s when wavelength(λ) was 60${\mu}{\textrm}{m}$. Insertion loss was over -10 dB, Q was factor over 200, and side lobe attenuation was over 22 dB which was suitable for use as a SAW filter. Electro-mechanical coupling coefficient (k$^2$) was calculated from the measured data. k$^2$ was from 1 % to 1.44 %. The fabricated SAW filter using Mg-doped GaN/sapphire structure has good qualities as a filter and will be used as a SAW filter for operating RF frequency.

  • PDF

Direct Bonding Characteristics of 2" 3C-SiC Wafers for Harsh Environment MEMS Applications (극한 환경 MEMS용 2" 3C-SiC기판의 직접접합 특성)

  • 정귀상
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.700-704
    • /
    • 2003
  • This paper describes on characteristics of 2" 3C-SiC wafer bonding using PECVD (plasma enhanced chemical vapor deposition) oxide and HF (hydrofluoride acid) for SiCOI (SiC-on-Insulator) structures and MEMS (micro-electro-mechanical system) applications. In this work, insulator layers were formed on a heteroepitaxial 3C-SiC film grown on a Si (001) wafer by thermal wet oxidation and PECVD process, successively. The pre-bonding of two polished PECVD oxide layers made the surface activation in HF and bonded under applied pressure. The bonding characteristics were evaluated by the effect of HF concentration used in the surface treatment on the roughness of the oxide and pre-bonding strength. Hydrophilic character of the oxidized 3C-SiC film surface was investigated by ATR-FTIR (attenuated total reflection Fourier transformed infrared spectroscopy). The root-mean-square suface roughness of the oxidized SiC layers was measured by AFM (atomic force microscope). The strength of the bond was measured by tensile strength meter. The bonded interface was also analyzed by IR camera and SEM (scanning electron microscope), and there are no bubbles or cavities in the bonding interface. The bonding strength initially increases with increasing HF concentration and reaches the maximum value at 2.0 % and then decreases. These results indicate that the 3C-SiC wafer direct bonding technique will offers significant advantages in the harsh MEMS applications.ions.

Characteristics of MOCVD Cobalt on ALD Tantalum Nitride Layer Using $H_2/NH_3$ Gas as a Reactant

  • Park, Jae-Hyeong;Han, Dong-Seok;Mun, Dae-Yong;Yun, Don-Gyu;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.377-377
    • /
    • 2012
  • Microprocessor technology now relies on copper for most of its electrical interconnections. Because of the high diffusivity of copper, Atomic layer deposition (ALD) $TaN_x$ is used as a diffusion barrier to prevent copper diffusion into the Si or $SiO_2$. Another problem with copper is that it has weak adhesion to most materials. Strong adhesion to copper is an essential characteristic for the new barrier layer because copper films prepared by electroplating peel off easily in the damascene process. Thus adhesion-enhancing layer of cobalt is placed between the $TaN_x$ and the copper. Because, cobalt has strong adhesion to the copper layer and possible seedless electro-plating of copper. Until now, metal film has generally been deposited by physical vapor deposition. However, one draw-back of this method is poor step coverage in applications of ultralarge-scale integration metallization technology. Metal organic chemical vapor deposition (MOCVD) is a good approach to address this problem. In addition, the MOCVD method has several advantages, such as conformal coverage, uniform deposition over large substrate areas and less substrate damage. For this reasons, cobalt films have been studied using MOCVD and various metal-organic precursors. In this study, we used $C_{12}H_{10}O_6(Co)_2$ (dicobalt hexacarbonyl tert-butylacetylene, CCTBA) as a cobalt precursor because of its high vapor pressure and volatility, a liquid state and its excellent thermal stability under normal conditions. Furthermore, the cobalt film was also deposited at various $H_2/NH_3$ gas ratio(1, 1:1,2,6,8) producing pure cobalt thin films with excellent conformality. Compared to MOCVD cobalt using $H_2$ gas as a reactant, the cobalt thin film deposited by MOCVD using $H_2$ with $NH_3$ showed a low roughness, a low resistivity, and a low carbon impurity. It was found that Co/$TaN_x$ film can achieve a low resistivity of $90{\mu}{\Omega}-cm$, a low root-mean-square roughness of 0.97 nm at a growth temperature of $150^{\circ}C$ and a low carbon impurity of 4~6% carbon concentration.

  • PDF

A Study on Properties of $MgF_2$ antireflection film for solar cell (태양전지용 $MgF_2$ 반사방지막 특성연구)

  • Yang, Hyeon-Hun;Baek, Su-Ung;Na, Kil-Ju;So, Soon-Youl;Park, Gye-Choon;Lee, Jin;Chung, Hae-Deok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1272_1274
    • /
    • 2009
  • $MgF_2$ is a current material for the optical applications in the UV and deep UV range. Process variables for manufacturing the $MgF_2$ thin film were established in order to clarify optimum conditions for growth of the thin film depending upon process conditions, and then by changing a number of vapor deposition conditions and substrate temperature, Annealing conditions variously, structural and Optical characteristics were measured. Thereby, optimum process variables were derived. Nevertheless, modern applications still require improvement of the optical and structural quality of the deposited layers. In the present work, the composition and microstructure of $MgF_2$ single layers grown on slide glass substrate by Electro beam Evaporator(KV-660) processes, were analyzed and compared. The surface Substrate temperature having an effect on the quality of the thin film was changed from 200[$^{\circ}C$] to 350[$^{\circ}C$] at intervals of 50[$^{\circ}C$]. and annealing temperature an effect on the thin film was changed from 200[$^{\circ}C$] to 400[$^{\circ}C$] at intervals of 50[$^{\circ}C$]. Physical properties of the thin film were investigated at various fabrication conditions substrate temperature, annealing and temperature, annealing time by XRD, FE-SEM.

  • PDF

Cu2ZnSn(S,Se)4 Thin Film Solar Cells Fabricated by Sulfurization of Stacked Precursors Prepared Using Sputtering Process

  • Gang, Myeng Gil;Shin, Seung Wook;Lee, Jeong Yong;Kim, Jin Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.97-97
    • /
    • 2013
  • Recently, Cu2ZnSn(S,Se)4 (CZTSS), which is one of the In- and Ga- free absorber materials, has been attracted considerable attention as a new candidate for use as an absorber material in thin film solar cells. The CZTSS-based absorber material has outstanding characteristics such as band gap energy of 1.0 eV to 1.5 eV, high absorption coefficient on the order of 104 cm-1, and high theoretical conversion efficiency of 32.2% in thin film solar cells. Despite these promising characteristics, research into CZTSS based thin film solar cells is still incomprehensive and related reports are quite few compared to those for CIGS thin film solar cells, which show high efficiency of over 20%. I will briefly overview the recent technological development of CZTSS thin film solar cells and then introduce our research results mainly related to sputter based process. CZTSS thin film solar cells are prepared by sulfurization of stacked both metallic and sulfide precursors. Sulfurization process was performed in both furnace annealing system and rapid thermal processing system using S powder as well as 5% diluted H2S gas source at various annealing temperatures ranging from $520^{\circ}C$ to $580^{\circ}C$. Structural, optical, microstructural, and electrical properties of absorber layers were characterized using XRD, SEM, TEM, UV-Vis spectroscopy, Hall-measurement, TRPL, etc. The effects of processing parameters, such as composition ratio, sulfurization pressure, and sulfurization temperature on the properties of CZTSS absorber layers will be discussed in detail. CZTSS thin film solar cell fabricated using metallic precursors shows maximum cell efficiency of 6.9% with Jsc of 25.2 mA/cm2, Voc of 469 mV, and fill factor of 59.1% and CZTS thin film solar cell using sulfide precursors shows that of 4.5% with Jsc of 19.8 mA/cm2, Voc of 492 mV, and fill factor of 46.2%. In addition, other research activities in our lab related to the formation of CZTS absorber layers using solution based processes such as electro-deposition, chemical solution deposition, nano-particle formation will be introduced briefly.

  • PDF

Research of Liquid Crystal Alignment on Tantalum Oxide by Using Ion Beam Irradiation (이온빔 조사를 사용한 탄탈륨 산화막에서의 액정 배향에 대한 조사)

  • Lim, Ji-Hun;Oh, Byeong-Yun;Lee, Won-Kyu;Lee, Kang-Min;Na, Hyun-Jae;Park, Hong-Kyu;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.300-300
    • /
    • 2008
  • In this study, the advanced DuoPIGatron-type ion beam (IB) system was applied to inorganic thin film for aligning liquid crystal (LC). LC alignment on $Ta_2O_5$ via IB irradiation was embodied. As a result of IB irradiation, the homogeneously aligned liquid crystal display (LCD) on $Ta_2O_5$ was observed with low pretilt angles. The $Ta_2O_5$ were deposited on indium-tin-oxide coated Coming 1737 glass substrates by rf magnetron sputtering at $200^{\circ}C$. The deposition process resulted in forming very uniform thin film on glass substrates without any defects. To confirm the application of the inorganic alignment on modem display optical devices, we fabricated twisted nematic LCD and measured optical property and response time. As a result of the experiment, the electro optical characteristics of the LCD fabricated by using IB irradiation on $Ta_2O_5$ alignment layer were similar with the other LCD fabricated by using rubbing process.

  • PDF

Cu Metallization for Giga Level Devices Using Electrodeposition (전해 도금을 이용한 기가급 소자용 구리배선 공정)

  • Kim, Soo-Kil;Kang, Min-Cheol;Koo, Hyo-Chol;Cho, Sung-Ki;Kim, Jae-Jeong;Yeo, Jong-Kee
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.94-103
    • /
    • 2007
  • The transition of interconnection metal from aluminum alloy to copper has been introduced to meet the requirements of high speed, ultra-large scale integration, and high reliability of the semiconductor device. Since copper, which has low electrical resistivity and high resistance to degradation, has different electrical and material characteristics compared to aluminum alloy, new related materials and processes are needed to successfully fabricate the copper interconnection. In this review, some important factors of multilevel copper damascene process have been surveyed such as diffusion barrier, seed layer, organic additives for bottom-up electro/electroless deposition, chemical mechanical polishing, and capping layer to introduce the related issues and recent research trends on them.

A Study on the Surface Pre-treatment of Palladium Alloy Hydrogen Membrane (팔라듐 합금 수소 분리막의 전처리에 관한 연구)

  • Park, Dong-Gun;Kim, Hyung-Ju;Kim, Hyo Jin;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.248-256
    • /
    • 2012
  • A Pd-based hydrogen membranes for hydrogen purification and separation need high hydrogen perm-selectivity. The surface roughness of the support is important to coat the pinholes free and thin-film membrane over it. Also, The pinholes drastically decreased the hydrogen perm-selectivity of the Pd-based composite membrane. In order to remove the pinholes, we introduced various surface pre-treatment such as alumina powder packing, nickel electro-plating and micro-polishing pre-treatment. Especially, the micro-polishing pretreatment was very effective in roughness leveling off the surface of the porous nickel support, and it almost completely plugged the pores. Fine Ni particles filled surface pinholes with could form open structure at the interface of Pd alloy coating and Ni support by their diffusion to the membrane and resintering. In this study, a $4{\mu}m$ surface pore-free Pd-Cu-Ni ternary alloy membrane on a porous nickel substrate was successfully prepared by micro-polishing, high temperature sputtering and Cu-reflow process. And $H_2$ permeation and $N_2$ leak tests showed that the Pd-Cu-Ni ternary alloy hydrogen membrane achieved both high permeability of $13.2ml{\cdot}cm^{-2}{\cdot}min^{-1}{\cdot}atm^{-1}$ permation flux and infinite selectivity.

Tension Tests of Copper Thin Films (구리박막 시험편의 인장시험)

  • Park, Kyung Jo;Kim, Chung Youb
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.745-750
    • /
    • 2017
  • Tension tests for copper thin films with thickness of $12{\mu}m$ were performed by using a digital image correlation method based on consecutive digital images. When calculating deformation using digital image correlation, a large deformation causes errors in the calculated result. In this study, the calculation procedure was improved to reduce the error, so that the full field deformation and the strain of the specimen could be accurately and directly measured on its surface. From the calculated result, it can be seen that the strain distribution is not uniform and its variation is severe, unlike the distribution in a common bulk specimen. This might result from the surface roughness introduced in the films during the fabrication process by electro-deposition.

Influence of Incorporated Impurities on the Evolution of Microstructure in Electro-Deposited Copper Layer (혼입불순물이 구리 도금층의 미세조직변화에 미치는 영향)

  • Koo, Seok-Bon;Jeon, Jun-Mi;Lee, Chang-Myeon;Hur, Jin-Young;Lee, Hong-Kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.191-196
    • /
    • 2018
  • The self-annealing which leads evolution of microstructure in copper electroplating layers at room temperature occurs after forming deposition layer. During the process, crystal orientation, size and sheet resistance of plating layer change. Lastly, it causes the change of physical and mechanical characteristics such as a tensile strength of plating layer. In this study, the variation of incorporated impurities, microstructure and sheet resistance of copper plating layer formed by electroplating are measured with and without inorganic additives during the self-annealing. In case of absence of inorganic additives, the copper layer presents strong total intensity of incorporated impurities. During the self-annealing, such width of reduction was significant. Moreover, microstructure and crystal size are increased while the tensile strength is decreased noticeably. On the other hand, in the presence of inorganic additives, there is no observable distinction in the copper plating layer. According to the observation on movements of the incorporated impurities in electrodeposition copper layer, within 12 hours the impurities are continuously shifted from inside of the plating layer to its surface after as-deposited electroplating. Within 24 hours, except for the small portion of surface layer, it is considered that most of the microstructure is transformed.