• Title/Summary/Keyword: electrical resistivity method

Search Result 838, Processing Time 0.024 seconds

Monitoring the performance of a celite-based filter by using electrical resistivity and permeability measurements (전기비저항과 투수계수 측정을 통한 celite가 가미된 필터의 투과 성능 모니터링)

  • Kim, Kyu-Won;Kwon, Tae-Hyuk;Cho, Gye-Chun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.673-676
    • /
    • 2009
  • Non-point pollutants, which mainly originate from high traffic roads and rural areas, contaminate the environment by flowing into various rivers and lakes and thus are of interest as an environmental issue. Accordingly, efforts have been made to design and maintain efficient filter systems for the control of the non-point pollutants. Meanwhile, clay-type materials are widely used for the absorption of chemicals included in pollutants and the absorption performances of various clays have been reported in the literature. Thus, the present study proposes a non-destructive monitoring method for the performance of a clay-type filter using electrical resistivity measurement. A series of experimental tests is performed on celite-based particulate filters with infiltrating non-point source pollutants having the same characteristics as pollutants on high traffic roads. Each test measures permeability, resistivity of the filter materials and resistivity of the filtrated water. As the particulate filter materials filtrate pollutants and absorb heavy chemicals (e.g., $Cr^{6+}$, lead, nickel, among others), ionic concentration increases resulting as the electrical resistivity decrease. When the filter systems approach the end of their lifetime, the electrical resistivity of the filter material converges to a very low value due to lowered filter absorption efficiency. Hence, the electrical resistivity of the filtrated water also converges to a low value due to high concentrations of heavy metals. The permeability converges to a very low value because of significantly reduced porosity due to clogging and absorption of pollutants on the filter material. The experimental results show that electrical resistivity monitoring of filter materials is a promising approach to estimation of filter performance and its life expectancy.

  • PDF

Influence of Substrate Temperature on the TiC Thin Films Prepared by Unbalanced Magnetron Sputtering Method (비대칭 마그네트론 스퍼터링 방법으로 제조된 TiC 박막의 기판온도 영향)

  • Park, Yong-Seob;Lee, Jae-Hyeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.284-287
    • /
    • 2013
  • In this work, we have fabricated TiC films by using unbalanced magnetron sputtering method with graphite and Ti targets for contact strip application of electric railway. TiC films were deposited with various substrate temperatures. We investigated various properties of TiC films prepared with various substrate temperatures, such as the hardness, surface roughness, friction coefficient, resistivity, FESEM (Field Emission Scanning Electron Microscopy), HRTEM (High Resolution Transmission Electron Microscopy) and XPS (X-ray Photoelectron Spectroscopy). The hardness and friction coefficient properties of TiC films were improved with increasing substrate temperature. These results indicate that the improvement of hardness and resistivity is related to the increase of sp2 clusters in TiC films. And also, the resistivity value of TiC films were decreased with increasing substrate temperature.

Development of the ANN for the Estimation of Earth Parameter and Equivalent Resistivity

  • Ji Pyeong-Shik;Lee Jong-Pil;Shin Kwan-Woo;Lim Jae-Yoon;Kim Sung-Soo
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.350-356
    • /
    • 2005
  • Earth equipments are essential to protect humans and other types of equipment from abnormal conditions. Earth resistance and potential must be restricted within a low value. An estimation algorithm of earth parameters and equivalent resistivity is introduced to calculate reliable earth resistance in this research. The proposed algorithm is based on the relationship between apparent resistances and earth parameters. The proposed algorithm, which approximates the non-linear characteristics of earth by using the Artificial Neural Network (ANN), estimates the earth parameters and equivalent resistivity. The effectiveness of the proposed method is verified with case studies.

The Electrical Properties and Unconfined Compression Strength of Bottom Ash (Bottom Ash의 전기적 특성과 일축압축강도)

  • Kim, Tae-Wan;Son, Young-Hwan;Park, Jae-Sung;Noh, Soo-Kack;Bong, Tae-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.1
    • /
    • pp.21-30
    • /
    • 2014
  • The objective of this study is to find the electrical properties of Bottom ash from thermoelectric power plants in Korea. By using Parallel Plate Method, the electrical resistivity and dielectric constant were measured at the frequency from 20 Hz to 10 MHz. Also, unconfined strength test, XRF and sieve analysis were performed for finding the relationship between strength, physiochemical properties and electrical properties. In the result, the change of electrical resistivity and dielectric constant of bottom ash against frequency was similar to that of general soil. The proportion of fine grain in bottom ash had the positive correlation with dielectric constant and negative correlation with electrical resistivity. Chloride and sulfur trioxide were proportional to dielectric constant and the more bottom ash had chloride content, the lower electrical resistivity appeared in bottom ash. Unconfined strength of bottom ashes had a range from 200 kPa to 780 kPa and strength was inverse proportional to electrical resistivity.

Evaluation of Material Degradation Using Electrical Resistivity Method (전기비저항법을 이용한 재료열화 평가)

  • Kim, Jeong-Pyo;Bae, Bong-Kook;Kim, Dong-Joong;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.129-136
    • /
    • 2001
  • The remaining life estimation for the aged components in power plants as well as chemical plants are very important beacuse mechanical properties of the components are degraded with time of service exposure in high temperature. Since it is difficult to take specimens from the operating components to evaluate mechanical properties of components, nondestructive techniques are needed to estimate the degradation. In this study, test materials with 4 different degradation levels were prepared by isothermal aging heat treatment at $630^{\circ}C$. And the DC potential drop method and destructive methods such as tensile, $K_{IC}$ and hardness tests were used in order to evaluate the degradation of 1Cr-1Mo-0.25V steels. The objective of this study is to investigate the possibility of the application of DCPD method to estimate the material degradation, and to analyse the relationship between the electrical resistivity and the degree of material degradation.

  • PDF

Application of Electrical Resistivity Tomography Using Single Well in Seawater Intrusion Areas (해수침투지역에서 단일 시추공을 이용한 전기비저항 토모그래피 탐사의 적용성)

  • Song, Sung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.369-376
    • /
    • 2007
  • Electrical resistivity tomography was carried out at seawater intrusion monitoring wells located at watershed in coastal areas. It is difficult to identify the characteristics of resistivity near monitoring well in case of using high signalto-noise ratio array due to the high conductivity condition in coastal aquifer although electrical resistivity survey is well adopted to delineate hydrogeological characteristics with the distribution of electrical resistivity. To improve the quality of electrical resistivity survey for two sites with seawater intrusion monitoring wells, inversion with the results of holeto-surface electrical resistivity tomography using single well was executed. The results of inversion for aquifer near wells were verified with the results of drilling log with the informations of fracture, electrical conductivity logging and normal resistivity logging. The inversion for aquifer near one of two wells was also performed at low and high tide with the same electrodes, respectively. From the inversion result, it is possible to obtain the resistivity images with high resolution and to identify the characteristics of aquifer related to seawater intrusion with tidal fluctuation. From this study, it was demonstrated that the hole-to-surface electrical resistivity tomography method accompanied with drilling log, electrical conductivity logging and normal resistivity logging would be useful to delineate the hydrogeological structures near monitoring wells in coastal areas.

Evaluation Technology of Degradation of Metallic Alloy using Electrical Resistivity (전기비저항을 이용한 금속합금 열화도 평가기술)

  • Nahm, Seung-Hoon;Yu, Kwang-Min;Ryu, Jae-Cheon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.532-541
    • /
    • 2001
  • Developments of nondestructive evaluation techniques for reduction of strength or toughness by aging of material have been carried out, and the method using electrical resistivity is one of them. In this study, to examine the application of electrical resistivity to the evaluation of degradation of metallic alloy, ten different non-magnetic materials were selected as test materials. Electrical resistivities measured by DC two-point probe method and those measured by non-contact type eddy current method were compared with each other. In addition, to examine the application possibility of four-point probe technology in field, the electrical resistivities for 1Cr-lMo-0.25V steel measured by DC two-point probe method and four-point probe method were compared with each other Differences between two measured values for the 1Cr-1Mo-0.25V steel were 0.6%. Therefore, the four-point probe method can be applied to the estimation of the degradation of metallic alloy. ect.

  • PDF

Evaluation of Dispersion of Activated Carbon Fiber in Mortar Using Electrical Resistivity Method (전기저항 측정을 통한 모르타르 내의 섬유활성탄의 분산성 평가)

  • Lee, Bo Yeon;Lee, Jae Seoung
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.283-290
    • /
    • 2017
  • Various types of fibers are utilized in cementitious materials in order to improve their performances. Here, the extent of fiber dispersion is of key importance regardless of the purpose of using fiber. In this study, activated carbon fiber dispersion in mortar samples was evaluated using electrical resistivity method. In particular, the extent of fiber dispersion was compared per mixing methods and surface treatments. The results suggest that the surface resistivity method is capable of evaluating dispersion of activated carbon fiber and that ultrasound dispersion method is superior to mortar mixer and hand mixer method. The use of superplasticizer improved dispersion but acid treatment was not effective.

Variation of Electrical Resistivity Characteristics in Sand-Silt Mixtures due to Temperature Change (온도변화에 따른 모래-실트 혼합토의 전기비저항 특성변화)

  • Park, Jung-Hee;Seo, Sun-Young;Hong, Seung-Seo;Kim, YoungSeok;Lee, Jong-Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.25-32
    • /
    • 2012
  • The application of electrical resistivity, which is related to charge mobility, has increased in the field of geotechnical engineering for the detection of underground cavern, faults and subsurface pollution level. The purpose of this study is to investigate the variation of electrical resistivity due to temperature change. Sand-silt mixture specimens prepared in the square freezing nylon cell are frozen in the frozen chamber. Four electrodes are attached on the four side walls of the freezing cell for the measurement of electrical resistance during temperature change. Electrical resistances of sand-silt mixtures with different degrees of saturation (0%, 2.5%, 5%, 10%, 20%, 40%, 60% and 100%) are measured as the temperature of specimens decrease from $20^{\circ}C$ to $-10^{\circ}C$. The electrical resistances determined by Ohm's law are transformed into the electrical resistivity by calibration. Experimental results show that the higher degree of saturation, the lower electrical resistivity at $20^{\circ}C$. Electrical resistivity gradually increases as the temperature decrease from $20^{\circ}C$ to $0^{\circ}C$. For the specimens with the degree of saturation of 15% or higer, electrical resistivity dramatically changes near the temperature of $0^{\circ}C$. In addition, very high electrical resistivity is observed regardless of the degree of saturation if the specimens are frozen. This study provides the fundamental information of electrical resistivity according to the soil freezing and temperature change demonstrates that electrical resistivity be a practical method for frozen soil investigation.

A Study on Practicality of Condition Monitoring Method of Accelerated Thermal Aging CSPE (가속열화 된 CSPE 상태감시법 유효성 평가)

  • Lee, Jung-Hoon;Goo, Cheol-Soo;Kim, In-Yong;Shin, Yong-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2088-2092
    • /
    • 2011
  • The accelerated thermal aging of CSPE(chloro sulfonate polyethylene) of test cables were carried out for the period equal to 10, 20 and 30 years in air at $100^{\circ}C$, respectively. The CSPE cables(TAIHAN electric wire Co. Ltd) which installed in nuclear power plant for three years were used as starting materials. Condition monitering methods of the accelerated thermal aging of CSPE cables were estimated through indenter modulus and OIT(oxidation induction time) of IEC 62582, and those were newly estimated through volume electrical resistivity, ultrasound reflection time, density, FE-SEM(field emission scanning electron microscopy), XPS(x-ray photoelectron spectroscopy), EDS(energy dispersive spectroscopy), and WD-XRF(wavelength dispersive x-ray fluorescence). A new condition monitoring methods of the accelerated thermal aging of CSPE cables were generally coincident with trend of indenter modulus expect EDS, XPS and XRF. A volume electrical resistivity among new condition monitoring methods of the accelerated thermal aging of CSPE cables is excellent. It is considered that life-time of CSPE cable can be predicted through volume electrical resistivity, if CSPE jacket was aged for period such as more than 20 years.