• Title/Summary/Keyword: electrical resistivity method

Search Result 840, Processing Time 1.026 seconds

Chracteristics of TCO with dopant in $In_2O_3-ZnO-SnO_2$

  • Won, Ju-Yeon;Choe, Byeong-Hyeon;Ji, Mi-Jeong;Seo, Han;Nam, Tae-Bang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.79-79
    • /
    • 2009
  • Samples of Ta-doped in $In_2O_3-ZnO-SnO_2$(IZTO) with a doping level up to 4wt% were sintered at $1600^{\circ}C$ in $O_2$. The crystal phase of the samples was identified by an X-ray diffraction experiment. apparent density and porosity with sintered temperature from $1500^{\circ}C$ to $1640^{\circ}C$ are mesured by archimedes method. For each sample, the specific resistivity was determined. samples of sintered at $1600^{\circ}C$ had the highest density and lowest porousity and The Ta 0.25-wt%-doped IZTO ceramics had the lowest resistivity.

  • PDF

Characteristics of Contact resistivity on RTP annealing temperature and time after Plasma ion implant (플라즈마 이온주입 후 RTP 열처리 온도와 시간에 따른 접촉저항 특성)

  • Choi, Jang-Hun;Do, Seung-Woo;Lee, Yong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.5-6
    • /
    • 2009
  • In this paper, plasma ion implant is performed with $PH_3$ gas diluted by helium gas on P-type Si wafer (100). Spike Rapid Thermal Processing(RTP) annealing performed for 30~60 sec from $800\;^{\circ}C$ to $1000\;^{\circ}C$ in $N_2+O_2$ ambient. Crystalline defect is analyzed by Transmission Electron Microscope(TEM) and Double crystal X-ray Diffraction(DXRD). Contact resistivity($\rho c$), contact resistance(Rc) and sheet resistance(Rs) are analyzed by measuring Transfer Length Method(TLM) using 4155C analysis. As annealing temperature increase, Rs decrease and ${\rho}c$ and Rc increase at temperature higher than $850\;^{\circ}C$. We achieve low Rs, ${\rho}c$ and Rc with Plasma ion implant and spike RTP.

  • PDF

The Resistivity Properties of SrTiO$_3$ Thin Films by Sputtering method. (스퍼터링 방법을 이용한 SrTiO$_3$박막의 저항을 특성)

  • 이우선;손경춘;서용진;김남오;이경섭;김형곤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.207-210
    • /
    • 1999
  • The objective of this study Is to deposited the preparation of SrTiO$_3$3 dielectric thin films on Ag/barrier-mater/Si(N-type 100) bottom electrode using a conventional rf-magnetron sputtering technique with a ceramic target under various conditions. It is demonstrated that the leakage current of films are strongly dependent on the atmosphere during deposition and the substrate temperature. The resistivity properties of films deposited on silicon substrates were very high resistivity. Capacitance of the films properties were the highest value(1000pF) and dependent on substrate temperature.

  • PDF

The Volume Resistivity Properties due to Mixture ratio of Linear Low Density Polyethylene and Ethylene Vinyl Acetate (선형 저밀도 폴리에틸렌과 에틸렌 비닐아세테이트의 혼합비에 따른 체적고유저항 특성)

  • 박정구;육영수;신현택;신종열;이충호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.552-555
    • /
    • 1999
  • In this paper, the volume resistivity properties due to mixture ration of linear low density polyethylene(LLDPE) and ethylene vinyl acetate(EVA) are studied. Electrodes is composed of upper electrode 37(mm $\Phi$), guardring electrode(inner 55(mm $\Phi$ ), and lower electrode 87(mm $\Phi$ In order to measure the leakage current, We used electrometer and stable oven with temperature controller. Measurement method is to measure the leakage current of next specimen after applying the voltage according to 'Step Apply Methods' for ten minutes. In order to measure the volume resistivity properties, the micro electrometer is used, the range of temperature and applying voltage are 25 to 100[$^{\circ}C$] to 100[V] respectively.

  • PDF

Validation of a new magnetometric survey for mapping 3D subsurface leakage paths

  • Park, DongSoon;Jessop, Mike L.
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.891-902
    • /
    • 2018
  • Techniques for more reliable detection of 3D subsurface flow paths are highly important for most water-related geotechnical projects. In this case study, a magnetometric resistivity method with a new approach and state-of-the-art technology ("Willowstick survey") was applied to the testbed dam (YD dam) site, and its applicability was validated by geotechnical investigation techniques including borehole drilling and sampling, Lugeon test, flow direction and velocity test, and seismic tomography. In addition to the magnetometric survey, a 3D electrical resistivity survey was performed independently and the results were compared and discussed. The electrical resistivity survey was effective in detecting groundwater levels, but it was limited in mapping leakage paths. On the other hand, the Willowstick magnetometric survey effectively detected geologic weaknesses (e.g., fault fracture) and potential leakage paths of the dam site foundation rocks. The results of this research are expected to be effective for water infrastructures where leakage is an important issue.

Harmony search algorithm to predict anomalous zone ahead of tunnel face utilizing electrical resistivity survey (터널 굴착면 전방의 이상지반 예측을 위한 전기비저항 기반 하모니서치 (HS) 역해석 알고리즘)

  • Park, Jin-Ho;Lee, Kang-Hyun;Shin, Sang-Hoon;Lee, Seong-Won;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.149-160
    • /
    • 2014
  • The objective of this study is the application of the harmony search (HS) algorithm and verification of the accuracy of inverse analysis to predict the location, thickness and electrical properties of anomalous zone ahead of tunnel face when utilizing the electrical resistivity survey using electrical resistivity of the ground. The relationship correlating the characteristic values of the anomalous zone with the electrical resistance values was derived using Gauss' laws and Ohm's laws. Inverse analysis program was developed to predict anomalous zone by using electrical resistivity based on HS algorithm. Electrical resistance measuring system is devised to obtain the electrical resistivity of the ground, and laboratory tests were performed on anomalies to verify the proposed HS algorithm. The test results show that the characteristics of the anomalies are predicted reasonably well resulting in less than 5% error when predicting the location and thickness of the anomaly.

Crossplot Interpretation of Electrical Resistivity and Seismic Velocity Values for Mapping Weak Zones in Levees (제방의 취약구간 파악을 위한 전기비저항과 탄성파속도의 교차출력 해석)

  • Cho, Kyoung-Seo;Kim, Jeong-In;Kim, Jong-Woo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.507-522
    • /
    • 2021
  • Specific survey objectives often cannot be met using only one geophysical method, as each method's results are influenced by the specific physical properties of subsurface materials. In particular, areas susceptible to geological hazards require investigation using more than one method in order to reduce risks to life and property. Instead of analyzing the results from each method separately, this work develops a four-quadrant criterion for classifying areas of levees as safe or weak. The assessment is based on statistically determined thresholds of seismic velocity (P-wave velocity from seismic refraction and S-wave velocity from multichannel analysis of surface waves) and electrical resistivity. Thresholds are determined by subtracting the standard deviation from the mean during performance testing of this correlation technique applied to model data of four horizontal and inclined fracture zones. Compared with results from the crossplot of resistivity and P-wave velocity, crossplot analysis using resistivity and S-wave velocity data provides more reliable information on the soil type, ground stiffness, and lithological characteristics of the levee system. A loose and sandy zone (represented by low S-wave velocity and high resistivity) falling within the second quadrant is interpreted to be a weak zone. This interpretation is well supported by the N values from standard penetrating test for the central core.

Electrical Properties of Annealed $WSi_{x}$ Films Deposited on P+ Polysilicon by LPCVD (P+ Polysilicon층 위에 저압화학증착된 $WSi_{x}$ 박막의 열처리에 따른 전기적 특성)

  • 이희승;임호빈;이종무
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.81-85
    • /
    • 1990
  • $WSi_{x}$ film deposited on p+ polysilicon by low pressure chemical vapor deposition method were annealed by rapid thermal process, their properties have been investigated by measurements of electrical resistivity and Hall voltage and by analyses of phases and microstructure using X-ray diffraction and SEM technique. The electrical resistivity of the polycides consisting of the tungsten silicide and the p+ polysilicon decreases with the increase in annealing temperature due probably to the increase in grain size. unlike the polycides consisting of the $WSi_{x}$ and n+ polysilicon, however, the Hall voltage of the polycides consisting of $WSi_{x}$ and p+ polysilicon were positive for all specimens annealed as well as the as-deposited one, indicating the majority carrier in $WSi_{x}$. is hole and is independent of the annealing.

Method for Safety-Decision to Apply International Standard Grounding Systems to Domestic Power System by Computer Simulation (국제 규격 접지시스템의 국내 적용을 위한 시뮬레이션 기반의 안전도 평가 방안)

  • Lee, Soon;Kim, Jung-Hoon;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.344-353
    • /
    • 2008
  • To apply the appropriate new grounding system to domestic power system, safety has to be guaranteed under the given circumstances. It is not possible to decide the safety of grounding systems by the experimental test because safety experiments directly relate to the human life and the installed electric machines. Therefore, the computer simulation program to decide the safety of grounding systems based on the IEC standard systems, has to be developed. This paper proposes the computer simulation based method to decide the safety of grounding system with the concepts of touch voltage, step voltage, human resistivity, and applied electric current according to the several conditions of human body located in the corresponding grounding systems. The proposed method is implemented by Matlab/Simulink and Visual C++ programming tools for its visualization.

Effect of heat-treatment on the structural and electrical properties of ZnO thin films by the sol-gel method

  • Lee, Seung-Yup;Park, Byung-Ok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.2
    • /
    • pp.72-75
    • /
    • 2008
  • Zinc oxide (ZnO) thin films were prepared by a sol-gel method. The structural and electrical properties were investigated by varying drying and annealing temperatures. The thin films were coated (250 nm) by spin-coating method on glass substrates. The optimum drying temperature of ZnO thin films was 300$^{\circ}C$ where the resistivity was the lowest and the preferred c-axis orientation was the highest. The annealing was carried out in air and inert atmospheric conditions. The degree of the preferred c-axis orientation was estimated. The highest preferred c-axis orientation was recorded at 600$^{\circ}C$. The preferred c-axis orientation and grain growth resulted in the mobility enhancement of the ZnO thin films, and the lowest resistivity was 0.62${\Omega}{\cdot}cm$ at 600$^{\circ}C$.