• Title/Summary/Keyword: electrical resistance heating

Search Result 149, Processing Time 0.028 seconds

The Heating of Cu-oxide and Arc Properties according to Electrical Poor Contact (전기적 불완전 접촉에 따른 동산화물의 발열 및 아크 특성)

  • Kim, Wansu;Park, SangJune;Hwang, DongHyun
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.3
    • /
    • pp.15-20
    • /
    • 2019
  • As industry is progressing and standards of living are improved, the demand of electrical energy is expected to grow 8-9% annually. Therefore, the importance of electrical fire prevention technology with the ability of the power supply is being emphasized. According to the statistics of fire in Korea, fire occurred about 45,000 cases annually, and electrical fire possessed about 20%. The electrical fire by poor contact has increased gradually, can be connected as great fire to secondarily induce short circuit and earth fault. Then analysis of heating causes of electrical connections between copper and copper alloy is needed. Also, detection and analysis algorithm of oxide at copper alloy are necessary. In this research, in order to understand the characteristics of oxide growth with rising resistance and heating, it is demonstrated that the oxide at electrical connections can cause fire due to arcing.

Thermal Resistance Characteristics and Fin-Layout Structure Optimization by Gate Contact Area of FinFET and GAAFET (FinFET 및 GAAFET의 게이트 접촉면적에 의한 열저항 특성과 Fin-Layout 구조 최적화)

  • Cho, Jaewoong;Kim, Taeyong;Choi, Jiwon;Cui, Ziyang;Xin, Dongxu;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.296-300
    • /
    • 2021
  • The performance of devices has been improved with fine processes from planar to three-dimensional transistors (e.g., FinFET, NWFET, and MBCFET). There are some problems such as a short channel effect or a self-heating effect occur due to the reduction of the gate-channel length by miniaturization. To solve these problems, we compare and analyze the electrical and thermal characteristics of FinFET and GAAFET devices that are currently used and expected to be further developed in the future. In addition, the optimal structure according to the Fin shape was investigated. GAAFET is a suitable device for use in a smaller scale process than the currently used, because it shows superior electrical and thermal resistance characteristics compared to FinFET. Since there are pros and cons in process difficulty and device characteristics depending on the channel formation structure of GAAFET, we expect a mass-production of fine processes over 5 nm through structural optimization is feasible.

A study on the characteristics improvement of NTC thermistor characteristics based on NiO (NiO계 NTC thermistor의 특성개선에 관한 연구)

  • 김상영;한성진;김천섭;성영권
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1989.06a
    • /
    • pp.97-100
    • /
    • 1989
  • Thermistor is the semiconducting material whose electrical resistance is varied with its self heating. In this paper, the improvement of resistance-temperature characteristics of NTC thermistor devices based on NiO was experimented. The specimens were prepared by mixing NiO and Mn$_2$O$_3$(1:1 mole %) and by addition of CuO(1 wt %, 2 wt %, 4 wt %). The specimens were compacted at the pressure of 1000 kg/$\textrm{cm}^2$ and sintered for 1 hour in air ambient at 120$0^{\circ}C$. Reducing CuO additions not only resistance-temperature characteristics, but also increased room temperature resistance.

  • PDF

Flexible Planar Heater Comprising Ag Thin Film on Polyurethane Substrate (폴리우레탄 유연 기판을 이용한 Ag 박막형 유연 면상발열체 연구)

  • Seongyeol Lee;Dooho Choi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.29-34
    • /
    • 2024
  • The heating element utilizing the Joule heating generated when current flows through a conductor is widely researched and developed for various industrial applications such as moisture removal in automotive windshield, high-speed train windows, and solar panels. Recently, research utilizing heating elements with various nanostructures has been actively conducted to develop flexible heating elements capable of maintaining stable heating even under mechanical deformation conditions. In this study, flexible polyurethane possessing excellent flexibility was selected as the substrate, and silver (Ag) thin films with low electrical resistivity (1.6 μΩ-cm) were fabricated as the heating layer using magnetron sputtering. The 2D heating structure of the Ag thin films demonstrated excellent heating reproducibility, reaching 95% of the target temperature within 20 seconds. Furthermore, excellent heating characteristics were maintained even under mechanically deforming environments, exhibiting outstanding flexibility with less than a 3% increase in electrical resistance observed in repetitive bending tests (10,000 cycles, based on a curvature radius of 5 mm). This demonstrates that polyurethane/Ag planar heating structure bears promising potential as a flexible/wearable heating element for curved-shaped appliances and objects subjected to diverse stresses such as human body parts.

Electrical Resistance of Mo-doped $VO_2$ Films Coated on Graphite Conductive Plates by a Sol-gel Method (몰리브덴이 첨가된 이산화바나듐으로 표면처리한 탄소계 전도성판의 전기저항특성)

  • Choi, Won-Gyu;Jung, Hye-Mi;Lee, Jong-Hyun;Im, Se-Joon;Um, Suk-Kee
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2007-2010
    • /
    • 2008
  • Vanadium pentoxide ($V_2O_5$) powder was prepared and mixed with Molybdenum Oxides ($MoM_3$) to form Mo-doped and -undoped $VO_2$ films by a sol-gel method on graphite conductive substrates. X-Ray diffraction (XRD) and scanning electron microscopy (SEM) was used to investigate the chemical compositions and microstructures of the Mo-doped and -undoped $VO_2$ films. The variation of electrical resistance was measured as a function of temperature and stoichiometric composition between vanadium and molybdenum. In this study, it was found that Mo-doped and -undoped $VO_2$ shows the typical negative temperature coefficient (NTC) behavior. As the amount of the molybdenum increases, the electrical resistance of Modoped $VO_2$ film gets reduced under the transition temperature and a linear decrease in the transition temperature is observed. From these experimental results, we can conclude that the electrical resistance behavior with temperature change of $VO_2$ films can be utilized as a self-heating source with the electrical current flowing through the graphite substrate.

  • PDF

Development of Evaluating Technology for the Capability of Carrying Short-Circuit Current at Electrical Contacts in EHV Disconnecting Switches (초고압 단로기 접점의 단락전류 통전성능 평가기술 개발)

  • Oh, Yeon-Ho;Song, Ki-Dong;Chong, Jin-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.46-51
    • /
    • 2008
  • Extra-high voltage(EHV) disconnecting switch(DS) consists of the electrical contacts and mechanical parts which actuate the contacts. When the short-circuit condition occurs, a large amount of current flows through the electrical contact in disconnecting switches and this causes considerable temperature rise due to Joule heating. If the temperature rise is higher than the melting point of contact material, the DS contact becomes melting and cannot be usable anymore. For this reason, the analysis for capability of carrying short-circuit current in DS contacts must be performed at a design stage. Here, we proposed a numerical technique for evaluating the capability of carrying short-circuit current at electrical contacts in EHV DS. In this numerical approach, the mechanical and thermal analyses were simulated to check the capability of carrying short-circuit current. First, the applied pressure at contact parts was analyzed considering the mechanical properties, and then contact resistance was calculated by an empirical equation. Finally, thermal analysis was performed with resistance variation at electrical contacts. To verify these numerical results, the distributions of temperature in DS were experimentally measured and compared with each other. The results from experiments were agreed well with those from the proposed numerical simulations.

Device Suitability Analysis by Comparing Performance of SiC MOSFET and GaN Transistor in Induction Heating System (유도 가열 시스템에서 SiC MOSFET과 GaN Transistor의 성능 비교를 통한 소자 적합성 분석)

  • Cha, Kwang-Hyung;Ju, Chang-Tae;Min, Sung-Soo;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.204-212
    • /
    • 2020
  • In this study, device suitability analysis is performed by comparing the performance of SiC MOSFET and GaN Transistor, which are WBG power semiconductor devices in the induction heating (IH) system. WBG devices have the advantages of low conduction resistance, switching losses, and fast switching due to their excellent physical properties, which can achieve high output power and efficiency in IH systems. In this study, SiC and GaN are applied to a general half-bridge series resonant converter topology to compare the conduction loss, switching loss, reverse conduction loss, and thermal performance of the device in consideration of device characteristics and circuit conditions. On this basis, device suitability in the IH system is analyzed. A half-bridge series resonant converter prototype using the SiC and GaN of a 650-V rating is constructed to verify device suitability through performance comparison and verified through an experimental comparison of power loss and thermal performance.

Thermal Shock Resistance of $Al_{2}O_{3}$- and Fe-$Al_{2}TiO_{5}$-based Castable Refractories

  • Liu, T.;Latella, B.A.;Bendeich, P.
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.345-351
    • /
    • 1998
  • Thermal shock resistance of $Al_2O_3$- and Fe-$Al_2TiO_5$-based Castable Refractories was studied using a central heating technique. Ring type specimens, 10mm thick and 20 and 100mm inner and outer diameters, respectively, were rapidly heated on the internal surface of the centre hole using a high power electrical heating element. The temperature field was measured experimentally and modelled using finite element analysis (FEA). The thermal stress field was also modelled using FEA. A radial notch was introduced to the ring specimens to enable calculation of the thermal stress intensity factors (SIF). A special LVDT device was incorporated in the thermal shock tester to monitor crack mouth opening displacement (COD). The thermal shock fracture initiation and crack propagation behaviour of the castable refractories were ascertained using the COD measurements and the fracture mechanics analysis data.

  • PDF

Effect of the Cu Bottom Layer on the Properties of Ga Doped ZnO Thin Films

  • Kim, Dae-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.185-187
    • /
    • 2012
  • Ga doped ZnO (GZO)/copper (Cu) bi-layered film was deposited on glass substrate by RF and DC magnetron sputtering and then the effect of the Cu bottom layer on the optical, electrical and structural properties of GZO films were considered. As-deposited 100 nm thick GZO films had an optical transmittance of 82% in the visible wavelength region and a sheet resistance of 4139 ${\Omega}/{\Box}$, while the GZO/Cu film had optical and electrical properties that were influenced by the Cu bottom layer. GZO films with 5 nm thick Cu film show the lower sheet resistance of 268 ${\Omega}/{\Box}$ and an optical transmittance of 65% due to increased optical absorption by the Cu metallic bottom layer. Based on the figure of merit, it can be concluded that the thin Cu bottom layer effectively increases the performance of GZO films as a transparent and conducting electrode without intentional substrate heating or a post deposition annealing process.

Speed Error Compensation By Rotor Resistance Estimation in Sensor-less Vector Control (속도센서없는 벡터제어시 회전자저항 추정에 의한 속도오차보상)

  • Kim, Joohn-Sheok;Mok, Hyung-Soo;Kim, Heui-Wook;Park, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.326-331
    • /
    • 1990
  • In the vector-controlled induction machine drive, mechanical sensors restrict the wide applications of high performance AC drives. So in resent years, many papers have been presented which doesn't need mechanical sensors, named by sensorless vector control. But sensorless control has a few serious problem, one of which Is poor speed estimation in case of incorrect rotor resistance (Rr) information. This paper describes the stator flux orientation speed control strategy with the speed estimation algorithm. and the method of adapting Rr change due to thermal heating. By proposed method. We can acquire precise speed estimation and higher performance.

  • PDF