• 제목/요약/키워드: electrical contacts

검색결과 345건 처리시간 0.032초

재해분석을 통한 배전선로 활선작업 공종별 위험지수 평가 (The Assessment of the Risk Index of Live-line Works on Distribution Line by the Accident Analysis)

  • 최승동;현소영;한형주;신운철
    • 한국안전학회지
    • /
    • 제26권3호
    • /
    • pp.8-14
    • /
    • 2011
  • The live-line works are very dangerous because of direct contacts with the distribution line or neighboring contacts. So the purpose of this study is to identify the risk factor by accident occurrence form and accident case analysis, and to suggest the quantified risk index by risk occurrence frequency and risk strength analysis. And the risk index assessment is researched by accident cases analysis on work type. Accident cases of transmission distribution line are researched based on data of the Ministry of Employment and Labor in the last ten-year period (2000~2009). In results of this paper, high risk isn't always a priority of safety measures. Risk occurrence frequency and risk strength have to be considered according to detail work types, work methods and conditions of field work. And safety management measures must be planned according to risk occurrence frequency and risk strength.

A Review on TOPCon Solar Cell Technology

  • Yousuf, Hasnain;Khokhar, Muhammad Quddamah;Chowdhury, Sanchari;Pham, Duy Phong;Kim, Youngkuk;Ju, Minkyu;Cho, Younghyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제9권3호
    • /
    • pp.75-83
    • /
    • 2021
  • The tunnel oxide passivated contact (TOPCon) structure got more consideration for development of high performance solar cells by the introduction of a tunnel oxide layer between the substrate and poly-Si is best for attaining interface passivation. The quality of passivation of the tunnel oxide layer clearly depends on the bond of SiO in the tunnel oxide layer, which is affected by the subsequent annealing and the tunnel oxide layer was formed in the suboxide region (SiO, Si2O, Si2O3) at the interface with the substrate. In the suboxide region, an oxygen-rich bond is formed as a result of subsequent annealing that also improves the quality of passivation. To control the surface morphology, annealing profile, and acceleration rate, an oxide tunnel junction structure with a passivation characteristic of 700 mV or more (Voc) on a p-type wafer could achieved. The quality of passivation of samples subjected to RTP annealing at temperatures above 900℃ declined rapidly. To improve the quality of passivation of the tunnel oxide layer, the physical properties and thermal stability of the thin layer must be considered. TOPCon silicon solar cell has a boron diffused front emitter, a tunnel-SiOx/n+-poly-Si/SiNx:H structure at the rear side, and screen-printed electrodes on both sides. The saturation currents Jo of this structure on polished surface is 1.3 fA/cm2 and for textured silicon surfaces is 3.7 fA/cm2 before printing the silver contacts. After printing the Ag contacts, the Jo of this structure increases to 50.7 fA/cm2 on textured silicon surfaces, which is still manageably less for metal contacts. This structure was applied to TOPCon solar cells, resulting in a median efficiency of 23.91%, and a highest efficiency of 24.58%, independently. The conversion efficiency of interdigitated back-contact solar cells has reached up to 26% by enhancing the optoelectrical properties for both-sides-contacted of the cells.

W/InGaN Ohmic 접촉의 전기적 구조적 특성연구 (Electrical and structure properties of W ohmic contacts to InGaN)

  • Han-Ki Kim;Tae-Yeon Seong
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 1999년도 추계학술발표강연 및 논문개요집
    • /
    • pp.76-76
    • /
    • 1999
  • Low resistance ohmic contacts to the Si-doped InGaN(~$\times$10$^{19}$ ㎤) were obtained using the W metallization schemes. Specific contact resistance decreased with increasing annealing temperature. The lowest resistance is obtained after a nitrogen ambient annealing at 95$0^{\circ}C$ for 90s, which results in a specific contact resistance of 2.75$\times$10$^{-8}$$\textrm{cm}^2$. Interfacial reactions and surface are analyzed using x-ray diffraction, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The X-ray diffraction results show that the reactions between the W film and the InGaN produce a $\beta$-W$_2$N phase at the interface. TEM results also show that the $\beta$-W$_2$N has a rough interface, which increase contact area. It shows that the morphology of the contacts is stable up to a temperature as high as 95$0^{\circ}C$. Possible mechanisms are proposed to describe the annealing temperature dependence of the specific contact resistance.

  • PDF

이동형 핵종 분석 장치용 CZT 반도체 검출기의 완충전극에 대한 연구 (A Study of Interface Layer on CdZnTe Radiation Sensor for Potable Isotope Identifier)

  • 조윤호;박세환;김용균;하장호
    • 방사선산업학회지
    • /
    • 제5권1호
    • /
    • pp.95-99
    • /
    • 2011
  • The electrical and mechanical properties of electrode for radiation detection are very important. In general, Au electrode and CZT crystal are combined to form ohmic contacts, and the best energy resolution is shown at the Au electrode. The metal contacts are fabricated by electroless deposition method, sputtering deposition method and thermal evaporation method. The electrode fabrication is easy with use of the thermal evaporation method, while an adhesive strength is weak. Thus interface materials such as Ag, Al and Ni were investigated to overcome defects generated by the this method. The thickness of the interface material between the Au electrode and the CZT crystal was 100 Angstroms, the Au electrode with thickness of 400 Angstroms was deposited. The Al+Au electrode is shown that the results of current-voltage and radiation response are similar to results of Au electrode.

Effect of Recombination and Decreasing Low Current on Barrier Potential of Zinc Tin Oxide Thin-Film Transistors According to Annealing Condition

  • Oh, Teresa
    • Journal of information and communication convergence engineering
    • /
    • 제17권2호
    • /
    • pp.161-165
    • /
    • 2019
  • In this study, zinc tin oxide (ZTO) thin-film transistors are researched to observe the correlation between the barrier potential and electrical properties. Although much research has been conducted on the electronic radiation from Schottky contacts in semiconductor devices, research on electronic radiation that occurs at voltages above the threshold voltage is lacking. Furthermore, the current phenomena occurring below the threshold voltage need to be studied. Bidirectional transistors exhibit current flows below the threshold voltage, and studying the characteristics of these currents can help understand the problems associated with leakage current. A factor that affects the stability of bidirectional transistors is the potential barrier to the Schottky contact. It has been confirmed that Schottky contacts increase the efficiency of the element in semiconductor devices, by cutting off the leakage current, and that the recombination at the PN junction is closely related to the Schottky contacts. The bidirectional characteristics of the transistors are controlled by the space-charge limiting currents generated by the barrier potentials of the SiOC insulated film. Space-charge limiting currents caused by the tunneling phenomenon or quantum effect are new conduction mechanisms in semiconductors, and are different from the leakage current.

결정질 실리콘 태양전지에 적용될 도금전극 특성 연구 (Investigation of Plated Contact for Crystalline Silicon Solar Cells)

  • 김범호;최준영;이은주;이수홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.192-193
    • /
    • 2007
  • An evaporated Ti/Pd/Ag contact system is most widely used to make high-efficiency silicon solar cells, however, the system is not cost effective due to expensive materials and vacuum techniques. Commercial solar cells with screen-printed contacts formed by using Ag paste suffer from a low fill factor and a high shading loss because of high contact resistance and low aspect ratio. Low-cost Ni and Cu metal contacts have been formed by using electro less plating and electroplating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Ni/Cu alloy is plated on a silicon substrate by electro-deposition of the alloy from an acetate electrolyte solution, and nickel-silicide formation at the interface between the silicon and the nickel enhances stability and reduces the contact resistance. It was, therefore, found that nickel-silicide was suitable for high-efficiency solar cell applications. Cu was electroplated on the Ni layer by using a light induced plating method. The Cu electroplating solution was made up of a commercially available acid sulfate bath and additives to reduce the stress of the copper layer. In this paper, we investigated low-cost Ni/Cu contact formation by electro less and electroplating for crystalline silicon solar cells.

  • PDF

Selective Emitter 구조를 적용한 Ni/Cu Plating 전극 결정질 실리콘 태양전지 (Application of a Selective Emitter Structure for Ni/Cu Plating Metallization Crystalline Silicon Solar Cells)

  • 김민정;이재두;이수홍
    • 한국전기전자재료학회논문지
    • /
    • 제23권7호
    • /
    • pp.575-579
    • /
    • 2010
  • The technologies of Ni/Cu plating contact is attributed to the reduced series resistance caused by a better contact conductivity of Ni with Si and the subsequent electroplating of Cu on Ni. The ability to pattern narrower grid lines for reduced light shading was combined with the lower resistance of a metal silicide contact and an improved conductivity of the plated deposit. This improves the FF (fill factor) as the series resistance is reduced. This is very much requried in the case of low concentrator solar cells in which the series resistance is one of the important and dominant parameter that affect the cell performance. A Selective emitter structure with highly dopeds regions underneath the metal contacts, is widely known to be one of the most promising high-efficiency solution in solar cell processing In this paper the formation of a selective emitter, and the nickel silicide seed layer at the front side metallization of silicon cells is considered. After generating the nickel seed layer the contacts were thickened by Cu LIP (light induced plating) and by the formation of a plated Ni/Cu two step metallization on front contacts. In fabricating a Ni/Cu plating metallization cell with a selective emitter structure it has been shown that the cell efficiency can be increased by at least 0.2%.

준귀금속 전이원소, Pt, Pd를 이용한 p-InGaAs의 오믹 접촉저항 특성 연구 (Ohmic Contact Characteristics of p-InGaAs with Near-Noble Transition Metals of Pt and Pd)

  • 박영산;류상완;유준상;김효진;김선훈;김진혁
    • 한국재료학회지
    • /
    • 제16권10호
    • /
    • pp.629-632
    • /
    • 2006
  • Electrical characteristics of Pt/Ti/Pt/Au and Pd/Zn/Pd/Au contacts to p-type InGaAs grown on an InP substrate have been characterized as a function of the doping concentration and the annealing temperature. The Pt/Ti/Pt/Au contacts produced the specific contact resistance as low as $2.3{\times}10^{-6}{\Omega}{\cdot}cm^2$, when heat-treated at an annealing temperature of $400^{\circ}C$. Comparison of the Pt/Ti/Pt/Au and Ti/Pt/Au contacts showed that the first Pt layer plays an important role in reducing the contact resistivity probably by lowering energy barrier at the metal-semiconductor interface. For the Pd/Zn/Pd/Au contacts, the contact resistivity remained virtually unchanged with increasing annealing temperature. The specific contact resistivity as low as $4.7{\times}10^{-6}{\Omega}{\cdot}cm^2$ was obtained. The results indicate that the Pt/Ti/Pt/Au and Pd/Zn/Pd/Au schemes could be potentially important for the fabrication of InP-based optoelectronic devices, such as photodetector and optical modulator.

전기적 신호와 열적특성 분석에 의한 접촉불량 예측 (Prediction of Poor Contact by Analysis of Electrical Signal and Thermal Characteristics)

  • 이흥수;김두현;김성철;김윤복
    • 한국안전학회지
    • /
    • 제27권3호
    • /
    • pp.36-41
    • /
    • 2012
  • Electrical Connections often cause fires due to poor contact. Occurrence rate of these fires tends to increase annually. The reason why poor contacts occur is often because it is the low mechanical pressure at the contact points. A typical connection method using mechanical pressure is a screw terminal type. This study reviewed these poor contact cases in the screw terminals. In order to get reproduction of such cases, two types of experiments were conducted. the first one was conducted under the normal contact condition, and the other one was conducted under the poor contact condition that screw terminal of breaker was loosen and did not meet the requirements of toque value. In both types of experiments, compulsory vibration was adopted as a variable to aggravate poor contacts. Each of various current values(4.5A, 9.0A, 13.5A) is input. In these experiments, relationships of a contact, electrical signal such as current and electric pulse by ZCT and thermal characteristics according to vibration effect are analyzed. The suggested data and results in this study provide the useful resources helping to investigate fires due to poor contact, and they develop the detector for poor contact and finally reduce the electrical fire occurrence rate.