• Title/Summary/Keyword: electric motor

Search Result 1,879, Processing Time 0.18 seconds

Parallel Running of Induction Motor using Anti-slip Controller (Anti-slip 제어기를 이용한 유도전동기 병렬운전)

  • Kim, Jung-Gyo;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.1
    • /
    • pp.41-46
    • /
    • 2006
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a anti-slip control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the anti-slip control is performed to obtain the maximum transfer of the tractive effort.

Design of Speed Controller for an Induction Motor with Inertia Variation

  • Sin E. C.;Kong B. G.;Kim J. S.;Yoo J. Y.;Park T. S.;Lee J. H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.374-379
    • /
    • 2001
  • In this paper, a novel design algorithm of speed controller for an Induction motor with the inertia variation is proposed. The main contribution of our work is a very robust, reliable and stable procedure for setting of the PI gains against the specified range of the inertia variation of an induction motor using Kharitonovs robust control theory. Therefore, the basic segment of controller design, the variation of induction motor inertia is estimated by the RLS (Recursive least square) method. PI based speed controller is widely used in industrial application for its simple structure and reliable performance. In addition the Kharitonov robust control theory is used for verification stability of closed-loop transfer function. The performance of this proposed design method is proved by digital simulation and experimentation with high performance DSP based induction motor driving system.

  • PDF

Demagnetization Diagnosis of Permanent Magnet Synchronous Motor Using Frequency Analysis at Standstill Condition

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.249-254
    • /
    • 2016
  • Recently, electric vehicles have got significant attention because it is more eco-friendly and efficient than internal combustion engine vehicles. Instead of an internal combustion engine, the electric vehicle has a motor for propulsion. The permanent magnet synchronous motor which has permanent magnet instead of field winding in the rotor has especially higher efficiency and power density than other types of motor. When the irreversible demagnetization is occurred, drivers are exposed to high risk of accident by the fault operation of motor. Therefore, the irreversible demagnetization of permanent magnet should be detected to reduce the risk of accident. In this study, the demagnetization diagnosis method based on the result of locked rotor test is proposed. Based on short measurement time, the proposed diagnosis method aims to detect the demagnetization fault when an electric vehicle is at a complete standstill. The proposed method is verified through the finite element analysis.

Percussive Drilling Application of a Tubular Reciprocating Translational Motion Permanent Magnet Synchronous Motor

  • Zhang, Shujun;Norum, Lars E.;Nilssen, Robert;Lorenz, Robert D.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.419-424
    • /
    • 2012
  • This paper presents a tubular reciprocating translational motion permanent magnet synchronous motor for percussive drilling applications for offshore oil & gas industry. The motor model and rock model are built up by doing force analysis of the motor and analyzing the physical procesof impact. The optimization of input voltage waveforms to maximize the rate of penetration is done by simulations. The simulation results show that the motor can be utilized in percussive drilling applications and achieve a very large impact force. Simulation results for optimization also show that second harmonic input voltage produces a higher rate of penetration than the sine wave and fourth harmonic input voltages.

Development of Brushless DC Motor for 0.5[kW] Air Compressor of Electric Vehicle (전기자동차용 0.5[kW]급 공기압축기의 브러시리스 직류전동기 개발)

  • Han, Man-Seung;Hong, Song-Ryul;Jo, Ju-Hee;Lee, Sang-Hun;Park, Seong-Jun;Kim, Dae-Kyong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.71-78
    • /
    • 2012
  • Recently, it is increased to apply sensorless drive for BLDC (Brushless DC) motor to maximize operating efficiency and fuel efficiency to an electrical component of (H)EV. Especially, Electric vehicle component promotes a fuel efficiency enhancement by the carbon dioxide emissions regulation of a vehicle becoming the principal of the environmental pollution globally, the oil price hike that continued increasingly. We suggested the air compressor which applied BLDC motor for electric vehicle component and compared suggested BLDC motor with the conventional DC motor. The experimental results show that the driving efficiency was increased and was inproved compressive force by suggested BLDC motor.

The Analysis of Strength and Driving Characteristic according to Design of Traction Motor for 8200 Electric Locomotive Series (8200호대 전기기관차 견인전동기의 설계에 따른 강도 및 운전특성 해석)

  • Lim, Chae-Woong;Yun, Cha-Jung;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.165-170
    • /
    • 2015
  • In this paper, The strength and driving characteristics of it were investigated according to developing the traction motor for 8200 electric locomotive series. For this purpose, Flux density strength was analyzed and then structural strength was investigated such as a stator frame, design of the rotor shaft bearing according to the design process. In addition, the traction motor operating point was analyzed according to slip frequency variation at a power source frequency. As the results of analysis on torque-speed characteristic curve, we was confirmed that traction motor was controlled as torque control prior to motor speed 1610[rpm], power control between 1610[rpm] and 2500[rpm] and breakdown torque control more than motor speed 2500[rpm].

Determination Method of Centerpost Distance of Interior Permanent Magnet Synchronous Motor for Electric Vehicle Traction Motor considering Mechanical Safety

  • Kim, Sung-Jin;Kim, Yong-Jae;Jung, Sang-Yong;Suzuki, Kenji
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • With the active development of hybrid electric vehicle (HEV), the application of interior permanent magnet synchronous motor (IPMSM) has been expanded. As wide driving region of IPMSM for electric vehicle (EV) traction motor is required, many studies are conducted to improve characteristics of a motor in both low and high-speed driving regions. A motor in high-speed driving region generates (produces) large stress to the rotor. Thus, the rotor needs to be designed considering the mechanical safety. Therefore, in this paper, we conducted stress analysis and electromagnetic analysis to determine the centerpost's distance which is considered important during the design of IPMSM for EV traction motor in order to secure mechanical safety and satisfy specifications of output requirement.

A Study for the Magnetic Loading and Electric Loading Ratio of AC Induction Motor for Traction Purpose (AC 견인용 유도전동기의 장하비에 관한 연구)

  • 권중록;박정태;이갑재;이정일;김기찬;이종인;김연달
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.674-679
    • /
    • 2000
  • Designing of the squirrel cage AC Traction Motor has many difficulties which has to be small size in order to be suitable into bogie frame, high efficiency and light weight. It means that induction motor for tractive purpose has to be different magnetic and electric loading ratio from industrial induction motor. This paper is devoted to an examination of how this ratio affects overall design concept and hence the main design points for traction motor. Also studied is tile changed coefficients of the magnetic and electric loading ratio squirrel cage induction motor for the traction purpose which has been already identified from tile reference book for industrial purpose induction motor.

  • PDF

A Study for the Magnetic and Electric Loading ratio of AC induction Motor for Traction Purpose (AC 견인전동기의 장하비 (裝荷比)에 관한 연구)

  • Kwon, J.L.;Park, J.T.;Lee, K.J.;Lee, J.Y.;Kim, K.C.;Lee, J.I.;Kim, Y.D.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.702-704
    • /
    • 2000
  • Designing of the squirrel cage AC Traction Motor has many difficulties which has to be small shape in order to be suitable into bogie frame, high efficiency and light weight. It means that induction motor for tractive efforts has to be different magnetic and electric loading ratio from industrial induction motor. This paper is devoted to an examination of how this ratio affects overall design concept and. hence the main design points for traction motor. Also studied is the changed coefficients of the magnetic and electric loading ratio squirrel cage induction motor for the traction purpose, which has been already identified from the referance book for industrial purpose induction motor.

  • PDF

Motor Control of a Parallel Hybrid Electric Vehicle during Mode Change without an Integrated Starter Generator

  • Song, Minseok;Oh, Joseph;Choi, Seokhwan;Kim, Yeonho;Kim, Hyunsoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.930-937
    • /
    • 2013
  • In this paper, a motor control algorithm for performing a mode change without an integrated starter generator (ISG) is suggested for the automatic transmission-based hybrid electric vehicle (HEV). Dynamic models of the HEV powertrains such as engine, motor, and mode clutch are derived for the transient state during the mode change, and the HEV performance simulator is developed. Using the HEV performance bench tester, the characteristics of the mode clutch torque are measured and the motor torque required for the mode clutch synchronization is determined. Based on the dynamic models and the mode clutch torque, a motor torque control algorithm is presented for mode changes, and motor control without the ISG is investigated and compared with the existing ISG control.