• Title/Summary/Keyword: electric motor

Search Result 1,879, Processing Time 0.032 seconds

Comparative LCA(life cycle assessment) between two different model of Electric Motor Unit(EMU) (서로다른모델의 전동차에 대한 비교 전과정평가)

  • Kim, Jin-Yong;Choi, Yo-Han;Kim, Young-Ki;Lee, Kun-Mo
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.6-14
    • /
    • 2007
  • The objective of this research is to comparative LCA(life cycle assessment) between two different model of Electric Motor Unit(EMU).the environmental impact of Aluminum body Electric Motor Unit(EMU) and Stainless Steel(STS) body Electric Motor Unit(EMU). LCA process consists of four steps which are goal, scope definition, life cycle impact analysis(LCIA) and life cycle interpretation. ISO 14044 provides the LCA standard method which can be conducted by using comparative LCA. From the research it is foung that the Aluminium Body Electric Motor Unit (EMU) is 3.6ton heaver than Stainless Steel(STS) body Electric Motor Unit(EMU). The system boundary of both Electric Motor Unit (EMU) are same life span and travel same distance. These both Electric Motor Unit (EMU) has same kind of environmental impact which is maximum Ozone Depletion(OD). During using period of these two models, the Aluminium Body Electric Motor Unit(EMU) has more global warming(GW) effect but Stainless Steel(STS) body Electric Motor Unit(EMU) has more Ozone Depletion(OD) effect. The above result is obtained by using LCA software PASS verson 3.1.3.

  • PDF

Thermal Analysis of a High Speed Induction Motor Considering Harmonic Loss Distribution

  • Duong, Minh-Trung;Chun, Yon-Do;Park, Byoung-Gun;Kim, Dong-Jun;Choi, Jae-Hak;Han, Pil-Wan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1503-1510
    • /
    • 2017
  • In this paper, a thermal analysis of a high speed induction motor with a PWM voltage source was performed by considering harmonic loss components. The electromagnetic analysis of the high speed induction motor was conducted using the time-varying finite element method, and its thermal characteristics were carried out using the lump-circuit method. Harmonic losses from tests in the high frequency region were divided into core loss and conductor loss components using various ratios, in order to determine the loss distributions for the thermal analysis. The results from both the calculations and experiment were validated using a high speed induction motor prototype operating at 20,000rpm.

A Study on the Efficiency Evaluation Standard and Regulation for Electric Motor Systems (전동기 시스템의 효율 평가 규격 및 규제 현황 연구)

  • Jun, Hee-Deuk;Park, Han-Seok;Kim, Dea-Kyong;Woo, Kyung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1618-1625
    • /
    • 2016
  • Electric motor systems account for more than half of all electric systems and the amount of energy consumption of those is almost 70 percent of total energy consumption of electric motor systems in industry. As electric motor systems are very responsible for global electricity savings and environment protection. Many international organizations are supporting standards and policy development processes to improve the efficiency of electric motor systems. Many standards are being developed at technical committee of IEC that has been required in order to support the implementation of efficiency regulations. High efficiency standards and levels for electric motor systems are slowly being introduced and compulsory in many countries. Therefore understanding the international efficiency evaluation standards and the regulation of electric motor systems of each country is important. This paper presents the current status and trends of international evaluation standards and regulations about the efficiency of electric motor systems.

In-wheel Motor Design for an Electric Scooter

  • Lee, Ji-Young;Woo, Byung-Chul;Kim, Jong-Moo;Oh, Hong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2307-2316
    • /
    • 2017
  • The aim of this paper is to provide an optimal design of in-wheel motor for an electric scooter (E-scooter) considering economical production. The preliminary development in-wheel motor, which has a direct-driven outer rotor type attached to the E-scooter's rear wheel without any gear, is introduced first. The objective of the optimal design of this in-wheel motor is to improve the output characteristics of the motor and to have a stator form to facilitate automatic winding. Response surface methodology was used for the optimal design and 2-dimensional finite element method was used for electro-magnetic field analysis. Experimental results showed that the designed and fabricated in-wheel motor could satisfy the required specifications in terms of speed, power, efficiency, and cogging torque.

Design of a Switched Reluctance Motor Driving an Electric Compressor for HEVs (하이브리드 자동차(HEV) 용 전동식 컴프레서 구동을 위한 SRM 설계)

  • Jeong, Yong-Hoe;Jeon, Yong-Hee;Kang, Jun-Ho;Kim, Jaehyuck
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.620-625
    • /
    • 2013
  • This paper presents the design of a switched reluctance motor (SRM) for electric air conditioning compressors which are applied to hybrid electric vehicles (EVs). The motor for driving air conditioning compressor which is recently used on EV(electric vehicle) / HEV (hybrid electric vehicle) is PMSM(permanent magnet synchronous motor) or BLDCM(brushless DC motor). However disadvantage of motors that uses permanent magnets are vulnerable to high temperatures because of the demagnetization by the high temperature and the permanent magnet is expensive because of the high price of rare earth materials from China's monopoly. Therefore, in the automotive insustry is interested in the non-rare-earth motors. SRM has many advantages. it's resistant to high temperatures, price is cheaper, because there are no permanent magnets and winding in the rotor. Also it's high relability and efficiency, suitable for high-speed operation because of structure is simple. In this paper, the SRM, non-rare-earth motor, are designed, analyzed and experimented drive to replace an existing electric compressor drive motor.

Thermal Analysis of High Speed Induction Motor by Using Lumped-Circuit Parameters

  • Han, Pil-Wan;Choi, Jae-Hak;Kim, Dong-Jun;Chun, Yon-Do;Bang, Deok-Je
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2040-2045
    • /
    • 2015
  • This paper deals with the electromagnetic and thermal analysis of high speed induction motor. The induction motor is analyzed by time-varying magnetic finite element method and its thermal analysis is carried out by using analytical lumped-circuit method. Analysis results are compared with the experiment of 29kW high speed motor prototype at 12,000rpm.

The Study of the Stray Load Loss and Mechanical Loss of Three Phase Induction Motor considering Experimental Results

  • Kim, Dong-Jun;Choi, Jae-Hak;Chun, Yon-Do;Koo, Dae-Hyun;Han, Pil-Wan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.121-126
    • /
    • 2014
  • The accurate determination of induction motor efficiency depends on the estimation of the five losses of stator and rotor copper loss, iron loss, mechanical loss and stray load loss. As the mechanical and stray load losses are not calculated by electro-magnetic analysis, the values of these two losses are very important in induction motor design. In this paper, the values of mechanical loss and stray load loss are proposed through investigating testing data from commercial products of three phase induction motors under 37kW. If the values of this paper are applied to motor design, the accuracy of design and analysis can be improved. The losses of motors are obtained by using load and no-load test results following IEC 60034-2-1 standard.

Development of the Standardized Aluminum Electric Motor Car (표준화된 알루미늄 전동차의 개발)

  • 서승일;최성호;임영호;이정수
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.3
    • /
    • pp.54-60
    • /
    • 1999
  • In this paper, design and construction process for the standardized electric motor car according to standard specification is described. Aluminum extrusion profiles and power and control system made domestically are used in the electric motor car. Also, plug-sliding door system for noise reduction and automatic train control system are developed and applied. Through the development of the electric motor car, most electric and control systems can be substituted by domestic standard systems, and safety and reliability of electric motor cars can be secured.

  • PDF