• Title/Summary/Keyword: electric generator

Search Result 921, Processing Time 0.029 seconds

Model Test of Dual-Buoy Wave Energy Converter using Multi-resonance (다중 공진을 이용한 이중 부이 파력발전장치의 모형실험)

  • Kim, Jeong-Rok;Hyeon, Jong-Wu;Koh, Hyeok-Jun;Kweon, Hyuck-Min;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.191-198
    • /
    • 2015
  • In this study, we proposed a new type of dual-buoy wave energy converter (WEC) exploiting multi-resonance and analyzed the experimental results from a model test in a 2-D wave flume. A dual-buoy WEC using multi-resonance has two advantages: high efficiency at the resonant frequencies and the potential to extend the frequency range available to extract wave power from the WEC. The suggested WEC was composed of an outer buoy and an inner buoy sliding vertically inside the outer buoy. As the power take-off device, a linear electric generator (LEG) consisting of permanent magnets and coils fixed at each buoy was adopted. Electricity was produced by the relative heave motion between the two buoys. To search for the optimal shape of a dual-buoy WEC, we conducted experiments on the heave motion of a two-body system in regular waves without an LEG installed. Model tests with six combinations of experimental models were conducted in order to find the motion characteristics of a dual-buoy WEC. It was found that model 2, which included a ring-shaped appendage to move the resonant frequency of the outer buoy toward a high value, showed a higher relative heave response amplitude operator (RAO) curve than model 1. In addition, the double-peak shape of the heave RAO curve shown for model 2 indicated the extension of the frequency range for extracting wave power in irregular waves.

Analysis on Momentary Voltage Dips with the Interconnection Operation of Utility-interactive Cogneration Systems Considering Their Generator Type (발전기 형태를 고려한 열병합발전시스템의 배전계통 연계운전시의 순시전압변동 해석)

  • 최준호;김재철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.4
    • /
    • pp.23-30
    • /
    • 2000
  • Cogeneration systems are seen as a significant innovation for dispersed energy generation since they are both environmentally friendly and has comparatively high degrees of efficiency. It is especially suited for the decentralized provision of electricity and heat. However, it causes operational problems such as voltage regulation, voltage variation, protection and safety. Especially, it is expected that the interconnection/disconnection operation of cogeneration system has an effect on distribution voltage regulation and variation. Recently, with the increased use of customer-owned computers and other sensitive electronic equipment, electric power quality has become an important concerns. Therefore, the voltage quality problems with cogeneration system should be investigated because the voltage quality is an important part of electrical power quality. In this paper, the momentary voltage dips associated with the interconnection/disconnection operation of cogeneration system are analyzed, including restraint solutions at the customer level. In addition, the unit capacity of cogeneration systems per feeder are evaluated from the view point of momentary voltage variations. The results of this paper are useful analysis data for interconnection standards/guidelines of cogeneration systems and dispersed generation (DG)

  • PDF

The Adaptive Maximum Power Point Tracking Control in Wind Turbine System Using Torque Control (토크제어를 이용한 풍력발전시스템의 적응 최대 출력 제어)

  • Hyun, Jong-Ho;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.225-231
    • /
    • 2015
  • The parameter K which decides how much to convert wind energy to electric energy in MPPT(maximum power point tracking) control of wind turbine system using torque controller is changed because blade shape and air density change. If the parameter K is not optimal value, power lose occur. The changed parameter K is important issue in wind turbine system. In this paper, to solve this problem, considering wind turbine system using back-to-back converter control and torque control, we propose the adaptive MPPT algorithm which performs fast control by using initial K, estimates mechanical power using Kalman filter method, uses the estimated mechanical power as input for MPPT algorithm again, and consequently performs optimal MPPT control.

Analysis of Current Density Distribution and In Vitro Exposur System fot ELF Exposed Cell Experiments (ELF 전자파 피폭 세포실험을 위한 배양기의 전류밀도 분포 해석 및 In Vitro 노출장치 설계)

  • 김대근;정재승;안재목
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.84-91
    • /
    • 2001
  • In in vitro cell experiments for the biological assessment of electromagnetic (EM) field, exposure system (ES) must be analyzed in terms of current density (J) and induced electric field intensity (E). Although in uniform B field, E and J in the sample medium are not distributed uniformly because of conductivity in sample dish. Thus, the precise estimation for E and J induced by uniform ELF within sample media is very important keys for successful in in vitro experiments. In this paper, we designed in vitro ELF ES with electromagnetic analysis using MATLAB simulator. Then we calculated from the measured B field to verify induced E & J distribution for random locations of cells within media in two cases of samples existence or not. ES with B field ranging from 0 to 20G consists of Helmholz coil and current generator based on the microprocessor. Also, we developed ELFES for each B field generation as uniform and non-uniform modes.

  • PDF

Radar Cross Section Reduction by Planar Array of Dielectric Barrier Discharge Plasma under Atmospheric Pressure (평면 배열 유전체 장벽 방전 플라즈마 발생기의 대기압에서의 레이다 단면적 감소 효과)

  • Kim, Yuna;Kim, Sangin;Kim, Doo-Soo;Lee, Yongshik;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.8
    • /
    • pp.646-652
    • /
    • 2017
  • The effect of plasma on mono-static radar cross section under atmospheric pressure is demonstrated when the dielectric barrier discharge actuator has plasma layer. The volume of plasma layer is increased by using planar array of electrodes. Because the incident wave has electric field which is perpendicular to the electrode array, the undesired effect on radar cross section caused by structure of plasma actuator is minimized. In experiments, mono-static radar cross section is measured at the frequencies from 2 GHz to 25 GHz. The generated plasma reduces the radar cross section at frequencies above 18 GHz, and the amount of reduction reaches to 8 dB in maximum. The reduction can be controlled by changing the peak-to-peak voltage from high voltage generator. The result shows the possibility of plasma as a flexible radar cross section controller.

SOC-based Control Strategy of Battery Energy Storage System for Power System Frequency Regulation (전력계통 주파수조정을 위한 SOC 기반의 배터리 에너지저장장치 제어전략)

  • Yun, Jun Yeong;Yu, Garam;Kook, Kyung Soo;Rho, Do Hwan;Chang, Byung Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.622-628
    • /
    • 2014
  • This paper presents the SOC-based control strategy of BESS(Battery Energy Storage System) for providing power system frequency regulation in the bulk power systems. As the life cycle of BESS would be shortened by frequent changes of charge and discharge required for frequency regulation in a steady state, the proposed algorithm operates BESS within a range of SOC where its life cycle can be maximized. However, during a transient period of which occurrence frequency is low, BESS would be controlled to use its full capacity in a wider range of SOC. In addition, each output of multiple BESS is proportionally determined by its SOC so that the balance in SOC of multiple BESS can be managed. The effectiveness of the proposed control strategy is verified through various case studies employing a test system. Moreover, the control result of BESS with the measured frequency from a real system shows SOC of BESS can be maintained within a specific range although the frequency deviation is biased.

Assessment of Offshore Wind Power Potential for Turbine Installation in Coastal Areas of Korea (터빈설치를 위한 한국 연안 해상풍력발전 부존량 평가)

  • Kang, Keum Seok;Oh, Nam Sun;Ko, Dong Hui;Jeong, Shin Taek;Hwang, Jae Dong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.4
    • /
    • pp.191-199
    • /
    • 2018
  • In this paper, wind data at 20 locations are collected and analyzed in order to review optimal candidate site for offshore wind farm around Korean marginal seas. Observed wind data is fitted to Rayleigh and Weibull distribution and annual energy production is estimated according to wind frequency. As the model of wind turbine generator, seven kinds of output of 1.5~5 MW were selected and their performance curves were used. As a result, Repower-5 MW turbines showed high energy production at wind speeds of 7.15 m/s or higher, but G128-4.5 MW turbines were found to be favorable at lower wind speeds. In the case of Marado, Geojedo and Pohang, where the rate of occurrence of wind speeds over 10 m/s was high, the capacity factor of REpower's 5 MW offshore wind turbine was 56.49%, 50.92% and 50.08%, respectively.

Load Following Operation Improvement by Governor Control Logic Modification of Thermal Power Plant (System Frequency Drop Prevention) (기력발전소 터빈조속기 제어로직 개선에 의한 발전기 부하추종성 향상 (계통주파수저하방지))

  • Lee, Jong-Ha;Kim, Tae-Woong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.302-306
    • /
    • 2006
  • The improvement of load following operation of the thermal power plant is influenced to the electrical quality. Analysis of boiler, turbine, and governor system, and the study of control algorithm are necessarily preceded. The thermal power plant is operated by various control systems. In the case of faulty governor system, it takes long days to solve the problem and impossible to repair the mechanism without outage. A non-planned outage is taken into consideration because of economical power production. The paper introduces the followings; In case of system-frequency drop during long term, at 500MW thermal power plant, the generator output was drop. To clear this problem, the control logic is modified with analysis of trend and control algorithm. As a result system frequency drop is prevented during the long tenn and the electric grid operation is improved.

A Study of the Mitigating Effect Comparison of Voltage Sags by WTG Types Based on the Concept of Area of Vulnerability (타입별 풍력 발전기 설치에 따른 민감 부하의 순간전압강하 저감 효과 비교 분석 연구)

  • Park, Se-Jun;Yoon, Min-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1682-1688
    • /
    • 2017
  • In modern society, the number of industrial customers using equipment sensitive particularly to voltage sags is rapidly increasing. As voltage sags can cause loss of information as well as false operation of the control device, it results in the vast economic damage in industrial processes. One way to mitigate voltage sags in the sensitive loads is the installation of distributed generation (DGs) on the periphery of these loads. In addition, renewable energy sources are currently in the spot light as the potential solution for the energy crisis and environmental issues. In particular, wind power generation which is connected to a grid is rising rapidly because it is energy efficient and also economically feasible compared to other renewable energy sources. On the basis of the above information, in this paper, with Wind Turbine Generators (WTGs) installed nearby the sensitive load, the analysis of the mitigating effect comparison by types of WTGs is performed using voltage sag assessment on the IEEE-30 bus test system. That is, the areas of vulnerability according to types of WTGs are expected to be different by how much reactive power is produced or consumed as WTG reactive power capability is related to the types of WTGs. Using the concept of 'Vulnerable area' with the failure rate for buses and lines, the annual number of voltage sags at the sensitive load with the installation of WTGs per type is studied. This research will be anticipated to be useful data when determining the interconnection of wind power generation in the power system with the consideration of voltage sags.

Development of a Small Animal CT using a Linear Detector Array and Small-Scale Slip Rings

  • An Ung Hwan;Chun In Kon;Lee Sang Chul;Cho Min Hyoung;Lee Soo Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.1
    • /
    • pp.43-47
    • /
    • 2005
  • We have developed a small bore x-ray CT for small animal imaging with a linear x-ray detector array and small-scale slip rings. The linear x-ray detector array consists of 1024 elements of 400□m×400□m with a gadolinium oxysulfide (GOS) scintillator on top of them. To avoid use of expensive large diameter slip rings for projection data transmission from the X­ray detector to the image reconstruction system, we used the wireless LAN technology. The projection data are temporally stored in the data acquisition system residing on the rotating gantry during the scan and they are transmitted to the image reconstruction system after the scan. With the wireless LAN technology, we only needed to use small-scale slip rings to deliver the AC electric power to the X-ray generator and the power supply on the rotating gantry. The performances of the small animal CT system, such as SNR, contrast, and spatial resolution, have been evaluated through experiments using various phantoms. It has been experimentally found that the SNR is almost linearly proportional to the tube current and tube voltage, and the minimum resolvable contrast is less than 30 CT numbers at 40kVp/3.0㎃. The spatial resolution of the small animal CT system has been found to be about 0.9Ip/㎜. Postmortem images of a piglet is also presented.