• Title/Summary/Keyword: electric deposition

Search Result 424, Processing Time 0.03 seconds

Preparation and Characterization of Organic-inorganic Hybrid Composite Film with Plate-shaped Alumina by Electrophoretic Deposition as a Function of Aging Time of Sol-Gel Binder

  • Kim, Doo Hwan;Park, Hee Jeong;Choi, Jinsub;Lim, Hyung Mi
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.366-373
    • /
    • 2015
  • Sol-gel binder was prepared by hydrolysis and condensation reaction using boehmite sol and methyltrimethoxysilane as a function of aging-time. The coating slurry was composed of a plate-shape alumina in the sol-gel binder for the EPD process, in which particles dispersed in the slurry were deposited on the electrode under an electric field due to the surface charge. We studied the effects of three parameters: the content of boehmite, the aging time, and the applied voltage, on the physical, thermal, and electrical properties of the hybrid composite films by EPD. The amount of boehmite was 10 ~ 20 wt% and the aging time was 0.5 ~ 72, with a fixed amount of plate-shape alumina of 10 wt%. The condition of applied voltage was 5 ~ 30 V with a distance of 2 cm between the electrode during the EPD process. We confirmed that a structure of hybrid composite films of well-ordered plate alumina was deposited on the substrate when the film was prepared using a sol-gel binder composed of 15 wt% boehmite with 1 hr aging time and EPD at 10 V. The process shows a weight loss of 7% at $500^{\circ}C$ in TGA and a breakdown voltage of 8 kV at $87{\mu}m$.

Improvement of Energy Storage Characteristics of (Ba0.7Ca0.3)TiO3 Thick Films by the Increase of Electric Breakdown Strength from Nano-Sized Grains (절연파괴특성 향상을 위한 나노미세구조 (Ba0.7Ca0.3)TiO3 후막 제조 및 에너지 저장 특성 평가)

  • Lee, Ju-Seung;Yoon, Songhyeon;Lim, Ji-Ho;Park, Chun-Kil;Ryu, Jungho;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.73-78
    • /
    • 2019
  • Lead free $(Ba_{0.7}Ca_{0.3})TiO_3$ thick films with nano-sized grains are prepared using an aerosol deposition (AD) method at room temperature. The crystallinity of the AD thick films is enhanced by a post annealing process. Contrary to the sharp phase transition of bulk ceramics that has been reported, AD films show broad phase transition behaviors due to the nano-sized grains. The polarization-electric hysteresis loop of annealed AD film shows ferroelectric behaviors. With an increase in annealing temperature, the saturation polarization increases because of an increase in crystallinity. However, the remnant polarization and cohesive field are not affected by the annealing temperature. BCT AD thick films annealed at $700^{\circ}C/2h$ have an energy density of $1.84J/cm^3$ and a charge-discharge efficiency of 69.9 %, which is much higher than those of bulk ceramic with the same composition. The higher energy storage properties are likely due to the increase in the breakdown field from a large number of grain boundaries of nano-sized grains.

Fabrication of GaN Ring Structure with Broad-band Emission Using MOCVD and Wet Etching Techniques

  • Sim, Young-Chul;Lim, Seung-Hyuk;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.243.1-243.1
    • /
    • 2016
  • Recently, many groups have attempted to fabricate 3-dimensional (3D) structures of GaN such as pyramids, rods, stripes and annulars. Since quantum structures on non-polar and semi-polar planes of 3D structures have less influence of internal electric filed, multi quantum wells (MQWs) formed on those planes have high quantum efficiency. Especially, pyramidal and annular structures consist of various crystal planes with different emission wavelength, providing a possibillity of phosphor-free white light emtting diodes (WLEDs).[1] However, it still has problem to obtain high color rendering index (CRI) number because of narrow-band emission and poor indium composition caused by the formation of few number of facets during metal-organic chemical vapor deposition growth.[2] If we can fabricate 3D structure having more various facets, we can make broad-band emittied WLEDs and improve CRI number. In this study, we suggest a simple method to fabricate 3D structures having various facet and containing high indium composition by means of a combination of metal-organic chemical vapor deposition and wet chemical etching techniques.

  • PDF

Characterization of BST films for high tunable thin film capacitor

  • No, Ji-Hyeong;Song, Sang-U;Kim, Ji-Hong;Go, Jung-Hyeok;Mun, Byeong-Mu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.179-179
    • /
    • 2009
  • This is for the electrical characterization by IDC pattern using BST$(Ba_{0.5}Sr_{0.5}TiO_3)$ thin film. BST materials had been chosen for high frequency applications due to it's high permitivity and tunability. The BST thin films have been deposited on $Al_2O_3$ Substrates by Nd-YAG pulsed laser deposition with a 355nm wavelength at $700\;^{\circ}C$. The post deposition annealing at $750^{\circ}C$ in flowing $O_2$ atmosphere for 1 hours. The capacitance of IDC patterns have been measured from 1 to 10 GHz as a function of electric field ($\pm40$ KV/cm) at room temperature using inter-digital Au electrodes deposited on top of BST. The IDC patterns have three type of fingers number. For the 10 pairs finger was the best capacitance onto $Al_2O_3$ substrate. The capacitance was 0.9pF. Also Dielectric constant was been 351 at 100 mTorr and annealing temperature $750^{\circ}C$ for 1 hour. The loss tangent was been 0.00531.

  • PDF

A Study on $TiO_2$ Thin Film by PLD for Buffer Layer between Front Electrode and FTO of Dye-sensitized Solar Cell (염료감응 태양전지에서 전면전극/FTO 사이에 완충층으로서의 PLD로 증착한 $TiO_2$ 박막에 관한 연구)

  • Song, Sang-Woo;Roh, Ji-Hyoung;Lee, Kyung-Ju;Ji, Min-Woo;Moon, Byung-Moo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.465-466
    • /
    • 2009
  • Dye-sensitized Solar Cell (DSC) is a new type of solar cell by using photocatalytic properties of $TiO_2$. The electric potential distribution in DSCs has played a major role in the operation of such cells. $TiO_2$ thin films were deposited on the ITO substrate by Nd:YAG Pulsed Laser Deposition(PLD) at room temperature and post-deposition annealing at $500^{\circ}C$ in flowing $O_2$ atmosphere for 1hour. The structural properties of $TiO_2$ thin films have investigated by X-ray diffraction(XRD). We manufactured DSC unit cells then I-V and efficiency were tested by solar simulator.

  • PDF

Growth of ZnSnO3 Thin Films on c-Al2O3 (0001) Substrate by Pulsed Laser Deposition

  • Manh, Trung Tran;Lim, Jae-Ryong;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.5
    • /
    • pp.297-302
    • /
    • 2014
  • $La_{0.5}Sr_{0.5}CoO_3$ (LSCO) electrode thin films with a resistivity of ~ 1,600 ${\mu}{\Omega}cm$ were grown on c-$Al_2O_3$ (0001) substrate. $ZnSnO_3$ (ZTO) thin films with different thicknesses were directly grown on LSCO/c-$Al_2O_3$ (0001) substrates at a substrate temperature that ranged from 550 to $750^{\circ}C$ using Pulsed Laser Deposition (PLD). The secondary phase $Zn_2SnO_4$ occurred during the growth of ZTO films and it became more significant with further increasing substrate temperature. Polarization-electric-field (P-E) hysteresis characteristics, with a remnant polarization and coercive field of 0.05 ${\mu}C/cm^2$ and 48 kV/cm, respectively, were obtained in the ZTO film grown at $700^{\circ}C$ in 200 mTorr.

Electrical Characterization of BST Thin Film by IDC pattern (IDC 패턴에 따른 BST 전기적 특성)

  • Roh, Ji-Hyoung;Kim, Sung-Su;Song, Sang-Woo;Kim, Ji-Hong;Koh, Jung-Hyuk;Moon, Byung-Moo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.200-200
    • /
    • 2008
  • This paper reports on electrical characterization by IDC pattern using BST$(Ba_{0.5}Sr_{0.5}TiO_3)$ thin film. BST thin films have been deposited on $Al_2O_3$ Substrates by Nd-YAG pulsed laser deposition with a 355nm wavelength at $700^{\circ}C$. The post deposition annealing at $750^{\circ}C$ in flowing $O_2$ atmosphere for I hours. The capacitance of IDC patterns have been measured from 1 to 10 GHz as a function fo electric field (${\pm}40$ KV/cm) at room temperature using interdiigitated Au electrodes deposited on top of BST. The IDC patterns have three type of fingers number. For the finger paris was increased onto $Al_2O_3$, the capacitance increased. The capacitance of 5 pairs finger was 0.3pF and 10 pairs finger was 0.9pF.

  • PDF

Low temperature growth of carbon nanotube by plasma enhanced chemical vapor deposition (PECVD) using nickel catalyst

  • Ryu, Kyoung-Min;Kang, Mih-Yun;Kim, Yang-Do;Hyeongtag-Jeon
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.109-109
    • /
    • 2000
  • Recently, carbon nanotube has been investigating for field emission display ( (FED) applications due to its high electron emission at relatively low electric field. However, the growing of carbon nanotube generally requires relatively high temperature processing such as arc-discharge (5,000 ~ $20,000^{\circ}C$) and laser evaporation (4,000 ~ $5,000^{\circ}C$) methods. In this presentation, low temperature growing of carbon nanotube by plasma enhanced chemical vapor deposition (PECVD) using nickel catalyst which is compatible to conventional FED processing temperature will be described. Carbon n notubes with average length of 100 run and diameter of 2 ~ $3\mu$ill were successfully grown on silicon substrate with native oxide layer at $550^{\circ}C$using nickel catalyst. The morphology and microstructure of carbon nanotube was highly depended on the processing temperature and nickel layer thickness. No significant carbon nanotube growing was observed with samples deposited on silicon substrates without native oxide layer. This is believed due to the formation of nickel-silicide and this deteriorated the catalytic role of nickel. The formation of nickel-silicide was confirmed by x-ray analysis. The role of native oxide layer and processing parameter dependence on microstructure of low temperature grown carbon nanotube, characterized by SEM, TEM XRD and R없nan spectroscopy, will be presented.

  • PDF

Critical Current Density Improvement of Superconducting YBCO Thick Film by using EPD Additives (전착 첨가물에 의한 전기영동 초전도 YBCO 후막선재의 임계전류밀도 개선)

  • Soh, Dea-Wha;Lim, Byong-Jae;Jeon, Yong-Woo;Park, Jung-Cheul;Choi, Sung-Jai
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.123-126
    • /
    • 2003
  • The electrophoretic deposition method using the suspension solution with additives under the electric potential was applied for the fabrication of YBCO superconductor wire. This method was able to simplify the fabrication facilities, and produce an uniform and dense thick film. To improve the critical current density of deposited films, the additive PEGs(Poly Ethylene Glycole) with the molecular weight of 600, 1000 and 3400, were used as chemical binders for the suspension solution. The organic additive PEG showed better effects to the properties of YBCO superconductor wire. The PEG improved the adhesion between superconductor particles and suppressed the crack on the surface, which enhanced the surface uniformity and density of YBCO deposited film. It was found that acetone suspension solution showed better deposition properties than the others. The samples fabricated in the solution with the additive, 8 vol.% of 1% PEG(1000), showed the highest critical current density measured as $2300{\sim}2400\;Acm^2$ at 77 K, 0 T.

  • PDF

Study on the Shift in the P-E Hysteresis Curve and the Fatigue Behavior of the PZT Capacitors Fabricated by Reactive Sputtering (반응성 스퍼터링법으로 형성시킨 PZT 커패시티의 P-E 이력곡선의 이동현상 및 피로 특성 연구)

  • Kim, Hyun-Ho;Lee, Won-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.983-989
    • /
    • 2005
  • [ $PZT(Pb(Zr,Ti)O_3)$ ] thin films were deposited by multi-target reactive sputtering method on $RuO_2$ substrates. Pure perovskite phase PZT films could be obtained by introducing Ti-oxide seed layer on the $RuO_2$ substrates prior to PZT film deposition. The PZT films deposited on the $RuO_2$ substrates showed highly voltage-shifted hysteresis loop compared with the films deposited on the Pt substrates. The surface of $RuO_2$ substrate was found to be reduced to metallic Ru in vacuum at elevated temperature, which caused the formation of oxygen vacancies at the initial stage of PZT film deposition and gave rise to the voltage shift in the P-E hysteresis loop of the PZT capacitor. The fatigue characteristics of the PZT capacitors under unipolar wane electric field were different from those under bipolar wane. The fatigue test under unipolar wane showed the increase of polarization. It was thought that the ferroelectric domains which had been pinned by charged defects such as oxygen vacancies and the charged defects were reduced in number by combining with the electrons injected from the electrode under unipolar wave, resulting in the relaxation of the ferroelectric domains and the increase of polarization.