Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.2.73

Improvement of Energy Storage Characteristics of (Ba0.7Ca0.3)TiO3 Thick Films by the Increase of Electric Breakdown Strength from Nano-Sized Grains  

Lee, Ju-Seung (Department of Materials Science & Engineering, Inha University)
Yoon, Songhyeon (Department of Materials Science & Engineering, Inha University)
Lim, Ji-Ho (Department of Materials Science & Engineering, Inha University)
Park, Chun-Kil (Department of Materials Science & Engineering, Inha University)
Ryu, Jungho (School of Materials Science & Engineering, Yeungnam University)
Jeong, Dae-Yong (Department of Materials Science & Engineering, Inha University)
Publication Information
Korean Journal of Materials Research / v.29, no.2, 2019 , pp. 73-78 More about this Journal
Abstract
Lead free $(Ba_{0.7}Ca_{0.3})TiO_3$ thick films with nano-sized grains are prepared using an aerosol deposition (AD) method at room temperature. The crystallinity of the AD thick films is enhanced by a post annealing process. Contrary to the sharp phase transition of bulk ceramics that has been reported, AD films show broad phase transition behaviors due to the nano-sized grains. The polarization-electric hysteresis loop of annealed AD film shows ferroelectric behaviors. With an increase in annealing temperature, the saturation polarization increases because of an increase in crystallinity. However, the remnant polarization and cohesive field are not affected by the annealing temperature. BCT AD thick films annealed at $700^{\circ}C/2h$ have an energy density of $1.84J/cm^3$ and a charge-discharge efficiency of 69.9 %, which is much higher than those of bulk ceramic with the same composition. The higher energy storage properties are likely due to the increase in the breakdown field from a large number of grain boundaries of nano-sized grains.
Keywords
energy storage properties; nano-grain; aerosol-deposition; $(Ba_{0.7}Ca_{0.3})TiO_3$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Claude, Y. Lu, K. Li and Q. Wang, Chem. Mater., 20, 2078 (2008).   DOI
2 A. Chauhan, S. Patel, R. Vaish and C. R. Bowen, Materials, 8, 8009 (2015).   DOI
3 Q. Chen, Y. Wang, X. Zhou, Q. M. Zhang and S. Zhang, Appl. Phys. Lett., 92, 1 (2008).
4 Z. Cheng, M. Lin, S. Wu, Y. Thakur, Y. Zhou, D. Y. Jeong, Q. Shen and Q. M. Zhang, Appl. Phys. Lett., 106, 202902 (2015).   DOI
5 M. N. Habashi and S. K. Asl, Korean J. Mater. Res., 27, 248 (2017).   DOI
6 D. Y. Yang, S. B. Kang, J. H. Lim, S. H. Yoon, J. Ryu, J. J. Choi, T. S.Velayutham, H. S. Kim and D. Y. Jeong, Met. Mater. Int., 23, 1045 (2017).   DOI
7 V. Annapureddy, S. M. Na, G. T. Hwang, M. G. Kang, R. Sriramdas, H. Palneedi, W. H. Yoon, B. D. Hahn, J. W. Kim, C. W. Ahn, D. S. Park, J. J. Choi, D. Y. Jeong, A. B. Flatau, M. Peddigari, S. Priya, K. H. Kim and J. Ryu, Energy Environ. Sci., 11, 818 (2018).   DOI
8 D. Xue, Y. Zhou, H. Bao, C. Zhou, J. Gao and X. Ren, J. Appl. Phys., 109, 1 (2011).   DOI
9 S. Zhang, F. Li, F. Yu, X. Jiang, H. Y. Lee, J. Luo and T. R. Shrout, J. Korean Ceram. Soc., 55, 419 (2018).   DOI
10 M. R. Panigrahi and S. Panigrahi, Phys. B (Amsterdam, Neth.), 404, 4267 (2009).   DOI
11 J. Akedo, J. Am. Ceram. Soc., 89, 1834 (2006).   DOI
12 J. H. Lim, C. K. Park, S. H. Cho, J. W. Kim, H. S. Kim and D. Y. Jeong, Ceram. Int., 44, 10829 (2018).   DOI
13 S. W. Jung and S. M. Koo, J. Nanosci. Nanotechnol., 16, 11402 (2016).   DOI
14 J. W. Kim, J. H. Lim, S. H. Kim, C. Y. Young, J. Ryu and D. Y Jeong, J. Ceram. Process. Res., 19, 243 (2018).   DOI
15 B. G. Baraskar, R. C. Kambale, A. R. James, M. L. Mahesh, C. V. Ramana and Y. D. Kolekar, J. Am. Ceram. Soc., 100, 5755 (2017).   DOI
16 C. K. Park, S. H. Lee, J. H. Lim, J. Ryu, D. H. Choi and D. Y. Jeong, Ceram. Int., 44, 20111, (2018).   DOI
17 V. S. Puli, D. K. Pradhan, B. C. Riggs, D. B. Chrisey and R. S. Katiyar, J. Alloys Compd., 584, 369 (2014).   DOI