• 제목/요약/키워드: elastic modeling

검색결과 555건 처리시간 0.026초

Evaluation of constitutive relations for concrete modeling based on an incremental theory of elastic strain-hardening plasticity

  • Kral, Petr;Hradil, Petr;Kala, Jiri
    • Computers and Concrete
    • /
    • 제22권2호
    • /
    • pp.227-237
    • /
    • 2018
  • Today, the modeling of concrete as a material within finite element simulations is predominantly done through nonlinear material models of concrete. In current sophisticated computational systems, there are a number of complex concrete material models which are based on theory of plasticity, damage mechanics, linear or nonlinear fracture mechanics or combinations of those theories. These models often include very complex constitutive relations which are suitable for the modeling of practically any continuum mechanics tasks. However, the usability of these models is very often limited by their parameters, whose values must be defined for the proper realization of appropriate constitutive relations. Determination of the material parameter values is very complicated in most material models. This is mainly due to the non-physical nature of most parameters, and also the large number of them that are frequently involved. In such cases, the designer cannot make practical use of the models without having to employ the complex inverse parameter identification process. In continuum mechanics, however, there are also constitutive relations that require the definition of a relatively small number of parameters which are predominantly of a physical nature and which describe the behavior of concrete very well within a particular task. This paper presents an example of such constitutive relations which have the potential for implementation and application in finite element systems. Specifically, constitutive relations for modeling the plane stress state of concrete are presented and subsequently tested and evaluated in this paper. The relations are based on the incremental theory of elastic strain-hardening plasticity in which a non-associated flow rule is used. The calculation result for the case of concrete under uniaxial compression is compared with the experimental data for the purpose of the validation of the constitutive relations used.

주파수영역 탄성파모델링에 대한 CFS-PML경계조건의 적용 및 개선 (Application and Improvement of Complex Frequency Shifted Perfectly Matched Layers for Elastic Wave Modeling in the Frequency-domain)

  • 손민경;조창수
    • 지구물리와물리탐사
    • /
    • 제15권3호
    • /
    • pp.121-128
    • /
    • 2012
  • 탄성파의 수치 모델링은 유한한 경계에서 발생하는 인공적인 반사파의 제거를 위한 경계조건을 필요로 한다. 이 연구에서는 주파수영역의 탄성파 수치 모델링에 CFS-PML (Complex Frequency Shifted-Perfectly Matched Layer) 경계조건을 적용하였다. 수치모델링 검증을 위해 Lamb's Problem의 해석해와 수치모델링 결과를 비교한 결과 일치하였다. 모형 내의 운동에너지, 최대크기오차, 그리고 스펙트럼오차를 통하여 CFS-PML경계조건이 기존의 흡수경계조건들 보다 유한경계에서 발생한 인공적인 반사파를 효과적으로 제거할 수 있음을 확인하였다. CFS-PML경계조건의 변수 ${\kappa}_{max}$${\alpha}_{max}$의 최적값은 운동에너지를 이용하여 산정할 수 있었다. 또한, 주파수에 따른 함수로 정의된 ${\alpha}_{max}$를 변수로 갖는 변형된 CFS-PML경계조건을 제안하여 기존 PML경계조건, CFS-PML경계조건, 그리고 변형된 CFS-PML경계조건의 성능을 운동에너지, 최대크기오차, 스펙트럼 오차로 비교하였다. 기존 PML경계조건에서 나타난 스쳐가는 입사각에 대한 반사파 문제가 CFS-PML경계조건, 그리고 변형된 CFS-PML경계조건에서는 개선되었다.

해상 크레인 탄성 붐 적용을 위한 3D 빔(beam) 유한 요소 정식화 및 자동화 (Automation of 3 Dimensional Beam Modeling based on Finite Element Formulation for Elastic Boom of a Floating Crane)

  • 박광필;차주환;이규열;함승호
    • 한국CDE학회논문집
    • /
    • 제15권6호
    • /
    • pp.411-417
    • /
    • 2010
  • In this paper, the boom of a floating crane is modeled as a 3-dimensional elastic beam in order to analyze the dynamic response of the crane and its cargo. The boom is divided into more than two elements based on finite element formulation, and deformation of each element is expressed in terms of shape matrix and nodal coordinates. The equations of motion for the elastic boom consist of a mass matrix, a stiffness matrix, and a quadratic velocity vector that contains the gyroscopic and Coriolis forces. The size and complicity of the matrices increase in proportion with the number of elements. Therefore, it is not possible to derive the equations of motion explicitly for different number of elements. To overcome this difficulty, matrices for one 3-dimensional element are expressed with elementary sub-matrices. In particular, the quadratic velocity vector is derived as a product of a shape matrix and a 3-dimensional rotation matrix. By using the derived matrices, the equations of motion for the multi-element boom are automatically constructed. To verify the implementation of the elastic boom based on finite element formulation, we simulated a simple vibration of the elastic boom and compared the average deformation with the analytic solution. Finally, heave motion of the floating crane and surge motion of the cargo are presented as application examples of the elastic boom.

Analytical Beam Field Modeling Applied to Transducer Optimization and Inspection Simulation in Ultrasonic Nondestructive Testing

  • Spies, Martin
    • 비파괴검사학회지
    • /
    • 제23권6호
    • /
    • pp.635-644
    • /
    • 2003
  • To ensure the reliability of ultrasonic nondestructive testing techniques for modern structural materials, the effects of anisotropy and inhomogeneity and the influence of non-planar component geometries on ultrasonic wave propagation have to be taken into account. In this article, fundamentals and applications of two analytical approaches to three-dimensional elastic beam field calculation are presented. Results for both isotropic materials including curved interfaces and for anisotropic media like composites are presented, covering field profiles for various types of transducers and the modeling of time-dependent rf-signals.

Measuring elastic modulus of bacterial biofilms in a liquid phase using atomic force microscopy

  • Kim, Yong-Min;Kwon, Tae-Hyuk;Kim, Seungchul
    • Geomechanics and Engineering
    • /
    • 제12권5호
    • /
    • pp.863-870
    • /
    • 2017
  • With the increasing interest in using bacterial biofilms in geo-engineering practices, such as soil improvement, sealing leakage in earth structures, and hydraulic barrier installation, understanding of the contribution of bacterial biofilm formation to mechanical and hydraulic behavior of soils is important. While mechanical properties of soft gel-like biofilms need to be identified for appropriate modeling and prediction of behaviors of biofilm-associated soils, elastic properties of biofilms remain poorly understood. Therefore, this study investigated the microscale Young's modulus of biofilms produced by Shewanella oneidensis MR-1 in a liquid phase. The indentation test was performed on a biofilm sample using the atomic force microscopy (AFM) with a spherical indentor, and the force-indentation responses were obtained during approach and retraction traces. Young's modulus of biofilms was estimated to be ~33-38 kPa from these force-indentation curves and Hertzian contact theory. It appears that the AFM indentation result captures the microscale local characteristics of biofilms and its stiffness is relatively large compared to the other methods, including rheometer and hydrodynamic shear tests, which reflect the average macro-scale behaviors. While modeling of mechanical behaviors of biofilm-associated soils requires the properties of each component, the obtained results provide information on the mechanical properties of biofilms that can be considered as cementing, gluing, or filling materials in soils.

항복강도 불일치 반타원 계면균열 선단에서의 응력장 (Stress Fields Along Semi-Elliptical Interfacial Crack Front with Yield-Strength-Mismatch)

  • 최호승;이형일
    • 대한기계학회논문집A
    • /
    • 제27권1호
    • /
    • pp.126-137
    • /
    • 2003
  • Many research works have been performed on the J-T approach for elastic-plastic crack-tip stress fields in a variety of plane strain specimens. To generalize the validity of J-T method, further investigations are however needed fur more practical 3D structures than the idealized plane strain specimens. The present study deals mainly with 3D finite element (FE) modeling of welded plate and straight pipe, and accompanying elastic, elastic-plastic FE analyses. Manual 3D modeling is almost prohibitive, since the models contain semi-elliptical interfacial cracks which require singular elements. To overcome this kind of barrier, we develop a program generating the meshes fur semi-elliptical interfacial cracks. We then compare the detailed 3D FE stress fields to those predicted with J-T two parameters. The validity of J-T approach is thereby extended to 3D yield-strength-mismatched weld joints, and useful information is inferred fur the design or assessment of pipe welds.

J-T에 의한 3차원 반타원 계면균열선단 응력장의 기술 (J-T Characterization of Stress Fields Along 3D Semi-Elliptical Interfacial Crack Front)

  • 최호승;이형일
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1250-1261
    • /
    • 2002
  • Many research works have validated the J-T approach to elastic-plastic crack-tip stress fields in a variety of plane strain specimens. To generalize the validity of J-T method, further investigations are however needed for more practical 3D structures than the idealized plane strain specimens. In this work, we perform 3D finite element (FE) modeling of welded plate and straight pipe, and accompanying elastic, elastic-plastic FE analyses. Manual 3D modeling is almost prohibitive, since the models contain semi-elliptical interfacial cracks which require singular elements. To overcome this kind of barrier, we develop a program generating the meshes for semi-elliptical interfacial cracks. We then compare the detailed 3D FE stress fields to those predicted with J-T two parameters. Thereby we extend the validity of J-T application to 3D structures and infer some useful informations for the design or assessment of pipe welds.

Dynamic modeling and structural reliability of an aeroelastic launch vehicle

  • Pourtakdoust, Seid H.;Khodabaksh, A.H.
    • Advances in aircraft and spacecraft science
    • /
    • 제9권3호
    • /
    • pp.263-278
    • /
    • 2022
  • The time-varying structural reliability of an aeroelastic launch vehicle subjected to stochastic parameters is investigated. The launch vehicle structure is under the combined action of several stochastic loads that include aerodynamics, thrust as well as internal combustion pressure. The launch vehicle's main body structural flexibility is modeled via the normal mode shapes of a free-free Euler beam, where the aerodynamic loadings on the vehicle are due to force on each incremental section of the vehicle. The rigid and elastic coupled nonlinear equations of motion are derived following the Lagrangian approach that results in a complete aeroelastic simulation for the prediction of the instantaneous launch vehicle rigid-body motion as well as the body elastic deformations. Reliability analysis has been performed based on two distinct limit state functions, defined as the maximum launch vehicle tip elastic deformation and also the maximum allowable stress occurring along the launch vehicle total length. In this fashion, the time-dependent reliability problem can be converted into an equivalent time-invariant reliability problem. Subsequently, the first-order reliability method, as well as the Monte Carlo simulation schemes, are employed to determine and verify the aeroelastic launch vehicle dynamic failure probability for a given flight time.

Numerical Simulation of the Elastic Moduli of Cement Paste As a Three Dimensional Unit Cell

  • Park, Ki-Bong
    • Architectural research
    • /
    • 제12권2호
    • /
    • pp.93-98
    • /
    • 2010
  • This paper describes a numerical method for estimating the elastic moduli of cement paste. The cement paste is modeled as a unit cell which consists of three components: the unhydrated cement grain, the gel, and the capillary pore. In the unit cell, the volume fractions of the constituents are quantified using a single kinetic function calculating the degree of hydration. The elastic moduli of cement paste are calculated from the total displacements of constituents when a uniform pressure is applied to the gel contact area. The cement paste is assumed to be a homogenous isotropic matrix. Numerical simulations were conducted through the finite element analysis of the three-dimensional periodic unit cell. The model predictions are compared with experimental results. The predicted trends are in good agreement with experimental observations. This approach and some of the results might also be relevant for other technical applications.

나노 및 바이오 시스템 해석을 위한 탄성네트워크모델 (Elastic Network Model for Nano and Bio System Analysis)

  • 김문기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.668-669
    • /
    • 2008
  • In this paper, we introduce various coarse-grained elastic network modeling (ENM) techniques as a novel computational method for simulating atomic scale dynamics in macromolecules including DNA, RNA, protein, and polymer. In ENM, a system is modeled as a spring network among representative atoms in which each linear elastic spring is well designed to replace both bonded and nonbonded interactions among atoms in the sense of quantum mechanics. Based on this simplified system, a harmonic Hookean potential is defined and used for not only calculating intrinsic vibration modes of a given system, but also predicting its anharmonic conformational change, both of which are strongly related with its functional features. Various nano and bio applications of ENM such as fracture mechanics of nanocomposite and protein dynamics show that ENM is one of promising tools for simulating atomic scale dynamics in a more effective and efficient way comparing to the traditional molecular dynamics simulation.

  • PDF