• Title/Summary/Keyword: elastic medium

Search Result 341, Processing Time 0.03 seconds

Nonlinear flexibility-based beam element on Winkler-Pasternak foundation

  • Sae-Long, Worathep;Limkatanyu, Suchart;Hansapinyo, Chayanon;Prachasaree, Woraphot;Rungamornrat, Jaroon;Kwon, Minho
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.371-388
    • /
    • 2021
  • A novel flexibility-based beam-foundation model for inelastic analyses of beams resting on foundation is presented in this paper. To model the deformability of supporting foundation media, the Winkler-Pasternak foundation model is adopted. Following the derivation of basic equations of the problem (strong form), the flexibility-based finite beam-foundation element (weak form) is formulated within the framework of the matrix virtual force principle. Through equilibrated force shape functions, the internal force fields are related to the element force degrees of freedom. Tonti's diagrams are adopted to present both strong and weak forms of the problem. Three numerical simulations are employed to assess validity and to show effectiveness of the proposed flexibility-based beam-foundation model. The first two simulations focus on elastic beam-foundation systems while the last simulation emphasizes on an inelastic beam-foundation system. The influences of the adopted foundation model to represent the underlying foundation medium are also discussed.

Capacity-spectrum push-over analysis of rock-lining interaction model for seismic evaluation of tunnels

  • Sina Majidian;Serkan Tapkin;Emre Tercan
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.327-336
    • /
    • 2024
  • Evaluation of tunnel performance in seismic-prone areas demands efficient means of estimating performance at different hazard levels. The present study introduces an innovative push-over analysis approach which employs the standard earthquake spectrum to simulate the performance of a tunnel. The numerical simulation has taken into account the lining and surrounding rock to calculate the rock-tunnel interaction subjected to a static push-over displacement regime. Elastic perfectly plastic models for the lining and hardening strain rock medium were used to portray the development of plastic hinges, nonlinear deformation, and performance of the tunnel structure. Separately using a computational algorithm, the non-linear response spectrum was approximated from the average shear strain of the rock model. A NATM tunnel in Turkey was chosen for parametric study. A seismic performance curve and two performance thresholds are introduced that are based on the proposed nonlinear seismic static loading approach and the formation of plastic hinges. The tunnel model was also subjected to a harmonic excitation with a smooth response spectrum and different amplitudes in the fully-dynamic phase to assess the accuracy of the approach. The parametric study investigated the effects of the lining stiffness and capacity and soil stiffness on the seismic performance of the tunnel.

On the buckling of smart beams in racket frames for enhancing the player's control using numerical solution and sinusoidal shear deformation theory

  • Liyan Li;Maryam Shokravi;S.S. Wang
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.657-662
    • /
    • 2024
  • In the present analysis, the buckling behavior of smart beams integrated into racket frames for enhancing player control was examined by numerical solutions and sinusoidal shear deformation theory. The smart beam under consideration is subjected to an external voltage in the thickness direction. The integration of this smart material into the structure of the racket should optimize performance, improving the racket's stability and responsiveness during play. In this, an accurate representation of complex shear effects is made by using a sinusoidal shear deformation theory, while the solution of the resulting governing equations is made by numerical methods. The critical buckling loads and the characteristics of deformation obtained through the analysis provide insight into some design parameters controlling and influencing stability. Obtained results are validated with other published works. The length and thickness of the beam, elastic medium, boundary condition, and influence of external voltages have been represented for buckling load in the structure. These results will help in designing smart racket frames using smart beams to provide more precision and control for the players in an intelligent way.

Random heterogeneous model with bimodal velocity distribution for Methane Hydrate exploration (바이모달 분포형태 랜덤 불균질 매질에 의한 메탄하이드레이트층 모델화)

  • Kamei Rie;Hato Masami;Matsuoka Toshifumi
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.41-49
    • /
    • 2005
  • We have developed a random heterogeneous velocity model with bimodal distribution in methane hydrate-bearing Bones. The P-wave well-log data have a von Karman type autocorrelation function and non-Gaussian distribution. The velocity histogram has two peaks separated by several hundred metres per second. A random heterogeneous medium with bimodal distribution is generated by mapping of a medium with a Gaussian probability distribution, yielded by the normal spectral-based generation method. By using an ellipsoidal autocorrelation function, the random medium also incorporates anisotropy of autocorrelation lengths. A simulated P-wave velocity log reproduces well the features of the field data. This model is applied to two simulations of elastic wane propagation. Synthetic reflection sections with source signals in two different frequency bands imply that the velocity fluctuation of the random model with bimodal distribution causes the frequency dependence of the Bottom Simulating Reflector (BSR) by affecting wave field scattering. A synthetic cross-well section suggests that the strong attenuation observed in field data might be caused by the extrinsic attenuation in scattering. We conclude that random heterogeneity with bimodal distribution is a key issue in modelling hydrate-bearing Bones, and that it can explain the frequency dependence and scattering observed in seismic sections in such areas.

Permeability Characteristics related with Damage Process in Granites (화강암의 손상과정에 따른 투수계수 특성 연구)

  • 정교철;채병곤;김만일;서용석
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.315-325
    • /
    • 2001
  • A series of laboratory tests was conducted to observe damage process by stress and to understand characteristics of permeability related with rock damage. Rock specimens which were composed of the Cretaceous medium grained granites were experienced of damage stress between 65% and 95% of the compressive strength. Rock deformation by damage process was identified with the elastic wave velocity test. Relationship between rock damage and permeability change was also analyzed by water injection test in the laboratory. According to the results of the tests, damage tends to be occurred from stress level of 80% of the compressive strength and it reduces elastic wave velocity. The damaged specimens with stress more than 80% of the compressive strength showed crack density more than 0.6 and persistent length with good connectivity of cracks. They also have higher permeability than that of specimens with crack density less than 0.6. Considered with the above results, the rock specimens used in this study were fully damaged from stress level of 80% of the compressive strength. Crack initiation and propagation by damage caused good connectivity of cracks through rock specimen. These damage process, therefore, brought high permeability coefficient through water flow conduit in the rock specimen.

  • PDF

Production of Rubber-Elastic Polyhydroxyalkanoates by Pseudomonas sp. HJ-2 (Pseudomonas sp. HJ-2를 이용한 고무탄성 Polyhydroxyalkanoate의 생산)

  • 정정욱;최강욱;김영백;이영하
    • Korean Journal of Microbiology
    • /
    • v.36 no.2
    • /
    • pp.155-160
    • /
    • 2000
  • Pseudomnas sp. HJ-2 is capable of producing a rubber-elastic polyhydroxyalkanoate (PHA) consisting of 3- hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), and 3-hydroxyheptanoate (3HHp) from heptanoic acid as the sole carbon source. The polyester produced was a blend of poly(3HB-co-3HV) and poly(3HHp). Although the mixing of poly(3HHp) fraction to poly(3HB-co-3HV) resulted in a decrease of modulus, the sole fraction of poly(3HB-co-3HV) with a high molar fraction of 3HV was shown to be an elastomer with the maximum percent strain of 740%. The biomass yield and the PHA synthesis were relatively high when the initial heptanoic acid concentration was 40 mM, and were significantly decreased when the substrate concentration exceeded 50 mM. The accumulation of PHA was stimulated by deficiency of nitrogen and phosphorus in the medium. The PHA contents and its monomeric compositions were greatly affected by pH and oxygen transfer rate. At pH 7.5, poly(3HB-~0.38% 3HV) was produced from heptanoic acid and a mixture of 95% 3HHp and 5% 3HV was produced at pH 8.0. Increased conten1 of 3HHp in the polyesters with lhe increasing oxygen transfer rate by agitation speed a1 a fixed aeration rate was observed.

  • PDF

Elastic Wave Characteristics According to Cementation of Dissolved Salt (용해된 소금의 고결화에 따른 탄성파 특성)

  • Eom, Yong-Hun;Truong, Q. Hung;Byun, Yong-Hoon;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.75-86
    • /
    • 2009
  • Salt, one of the most common soluble materials in engineering soil, may have an effect on mechanical behaviors of soils under its cementation process. In order to investigate this natural phenomenon, non-soluble material by using glass beads is mixed with salt electrolyte and cemented by using oven to evaporate water. Three different sizes of glass bead particles, 0.26, 0.5, and 1.29 mm, with different salt concentration, 0, 0.1, 0.2, 0.5, 1.0, and 2.0M, are explored by using P- and S-waves, excited by bender elements and piezo disk elemets, respectively. The velocities of the P-wave and S-wave of the particulate medium cemented by salt show three stages with the degree of saturation: 1) S-wave velocities increase while P-wave velocities reduce with degree of saturation changing from 100% to 90%; 2) Both velocities are stable with degree of saturation varying from 90% to 10%; 3) The velocities change enormously when the specimens are nearly dry with degree of saturation from 10% to 0%. Besides, the resonance frequencies of S-wave show similar stages to the S-wave velocities. This study demonstrates meaningful trends of elastic wave characteristics of geo-materials according to the cementation of dissolved salt.

Aerodynamic and Aeroelastic Tool for Wind Turbine Applications

  • Viti, Valerio;Coppotelli, Giuliano;De Pompeis, Federico;Marzocca, Pier
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.30-45
    • /
    • 2013
  • The present work focuses on the unsteady aerodynamics and aeroelastic properties of a small-medium sized wind-turbine blade operating under ideal conditions. A tapered/twisted blade representative of commercial blades used in an experiment setup at the National Renewable Energy Laboratory is considered. The aerodynamic loads are computed using Computational Fluid Dynamics (CFD) techniques. For this purpose, FLUENT$^{(R)}$, a commercial finite-volume code that solves the Navier-Stokes and the Reynolds-Averaged Navier-Stokes (RANS) equations, is used. Turbulence effects in the 2D simulations are modeled using the Wilcox k-w model for validation of the CFD approach. For the 3D aerodynamic simulations, in a first approximation, and considering that the intent is to present a methodology and workflow philosophy more than highly accurate turbulent simulations, the unsteady laminar Navier-Stokes equations were used to determine the unsteady loads acting on the blades. Five different blade pitch angles were considered and their aerodynamic performance compared. The structural dynamics of the flexible wind-turbine blade undergoing significant elastic displacements has been described by a nonlinear flap-lag-torsion slender-beam differential model. The aerodynamic quasi-steady forcing terms needed for the aeroelastic governing equations have been predicted through a strip-theory based on a simple 2D model, and the pertinent aerodynamic coefficients and the distribution over the blade span of the induced velocity derived using CFD. The resulting unsteady hub loads are achieved by a first space integration of the aeroelastic equations by applying the Galerkin's approach and by a time integration using a harmonic balance scheme. Comparison among two- and three- dimensional computations for the unsteady aerodynamic load, the flap, lag and torsional deflections, forces and moments are presented in the paper. Results, discussions and pertinent conclusions are outlined.

Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants (원전 안전 3 등급 고밀도 폴리에틸렌 매설 배관 맞대기 열 융착부의 인장 피로특성 평가)

  • Kim, Jong Sung;Lee, Young Ju;Oh, Young Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.11-17
    • /
    • 2015
  • High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions.

Numerical Computation of Dynamic Stress Intensity Factors in Axisymmetric Problems (축대칭 문제에서의 동적 응력확대계수의 계산)

  • 이성희;심우진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.207-216
    • /
    • 2003
  • In this paper, the finite element method for the elastodynamic axisymmetric fracture analysis is presented in matrix form through the application of the Galerkin method to the time integral equations of motion with no inertia forces. Isoparametric quadratic quadrilateral element and triangular crack tip singular elements with one-quarter node are used in the mesh division of the finite element model. To show the validity and accuracy of the proposed method, the infinite elastic medium with the penny shaped crack is solved first and compared with the analytical solution and the numerical results by the finite difference method and the boundary element method existing in the published literatures, and then the dynamic stress intensity factors of solid and hollow cylinders of finite dimensions haying penny-shaped cracks and internal and external circumferential tracks are computed in detail.