DOI QR코드

DOI QR Code

Elastic Wave Characteristics According to Cementation of Dissolved Salt

용해된 소금의 고결화에 따른 탄성파 특성

  • Eom, Yong-Hun (School of Civil, Environmental and Architectural Engineering, Korea Univ.) ;
  • Truong, Q. Hung (School of Civil, Environmental and Architectural Engineering, Korea Univ.) ;
  • Byun, Yong-Hoon (School of Civil, Environmental and Architectural Engineering, Korea Univ.) ;
  • Lee, Jong-Sub (School of Civil, Environmental and Architectural Engineering, Korea Univ.)
  • 엄용훈 (고려대학교 건축.사회환경공학부) ;
  • 쭝꽝훙 (고려대학교 건축.사회환경공학부) ;
  • 변용훈 (고려대학교 건축.사회환경공학부) ;
  • 이종섭 (고려대학교 건축.사회환경공학부)
  • Published : 2009.05.31

Abstract

Salt, one of the most common soluble materials in engineering soil, may have an effect on mechanical behaviors of soils under its cementation process. In order to investigate this natural phenomenon, non-soluble material by using glass beads is mixed with salt electrolyte and cemented by using oven to evaporate water. Three different sizes of glass bead particles, 0.26, 0.5, and 1.29 mm, with different salt concentration, 0, 0.1, 0.2, 0.5, 1.0, and 2.0M, are explored by using P- and S-waves, excited by bender elements and piezo disk elemets, respectively. The velocities of the P-wave and S-wave of the particulate medium cemented by salt show three stages with the degree of saturation: 1) S-wave velocities increase while P-wave velocities reduce with degree of saturation changing from 100% to 90%; 2) Both velocities are stable with degree of saturation varying from 90% to 10%; 3) The velocities change enormously when the specimens are nearly dry with degree of saturation from 10% to 0%. Besides, the resonance frequencies of S-wave show similar stages to the S-wave velocities. This study demonstrates meaningful trends of elastic wave characteristics of geo-materials according to the cementation of dissolved salt.

공학적 관점에서 용해가능한 가장 흔한 재료인 소금은 고결화 작용에 있어서 역학적 거동에 큰 영향을 미친다. 이러한 자연적 현상을 조사하기 위하여 용해되지 않는 재료인 글라스비즈와 소금물을 혼합하여 시료를 조성한 후 오븐을 이용하여 포화도를 변화시켜가면서 실험을 수행하였다. 입자크기가 0.26, 0.50, 1.29mm인 3종류의 글라스비즈와 0.0, 0.1, 0.2, 0.5, 1.0, 2.0M의 소금물에 대하여 각각의 시료를 조성 후 벤더 엘리먼트와 피에조 디스크 엘리먼트를 이용하여 전단파와 압축파를 측정하였다 소금에 의한 고결화 발생에서 전단파와 압축파 속도 모두 포화도에 따른 세가지 단계를 보여주었다: 1) 포차도가 $100%{\sim}90%$인 구간으로 전단파의 속도는 증가하고 압축파의 속도는 감소한다; 2) 포화도가 $90%{\sim}10%$인 구간으로 전단파와 압축파의 속도에 큰 변화가 없파; 3) 포화도가 $10%{\sim}0%$인 구간으로 전단파 및 압축파는 큰 변화를 보인다. 또한, 전단파의 공진주파수는 전단파의 속도 변화양상과 비슷한 경향을 보였다. 본 연구는 용해된 소금의 고결화에 따른 지반재료들의 탄성파 특성의 의미있는 경향을 보여준다.

Keywords

References

  1. 이창호, 윤형구, 이우진, 이종섭 (2008), "고결된 Engineered Soils의 탄성파 특성", 한국지반공학회 논문집, Vol.24, No.2, pp.87-97
  2. 조계춘, 이인모 (2002), "탄성파를 이용한 흙의 특성연구", 한국지반공학회 논문집, Vol.18, No.6, pp.83-101
  3. Asghari, E., Toll, D. G., and Haeri, S. M. (2003), "Triaxialbehaviour of a cemented gravely sand, Tehran alluvium", Geotech. Geological Engrg., Vol.21, pp.1-28 https://doi.org/10.1023/A:1022934624666
  4. Azam, S. (2000), "Collapse and compressibility behaviour of aridcalcareous soil formations", Bulletin of Engineering Geology andthe Environment, Springer Berlin, 59(3), pp.211-217 https://doi.org/10.1007/s100640000060
  5. Bell, F. G. (2004), Engineering Geology - 2nd edition. Elsevier.Great Britain
  6. Blyth, F. G. H. and de Freitas, M. H. (1984), A Geology for Engineers. Elsevier Butterworth. Oxford
  7. Carmichael, R.S. (1982), Handbook of physical properties of rocks, CRC Press, Boca Raton, p.345
  8. Chaney, R. and Mulilis, P. J. (1978), "Suggested method for soilspecimen remolding by wet raining", Geotech. Testing J. ASTM,Vol.1, No.2, pp.107-108 https://doi.org/10.1520/GTJ10378J
  9. Christopher, B. R., Atmatzidis, D. K., and Krizek, R. J. (1989), "Laboratory testing of chemically grouted sand", Geotech. Testing J., ASTM, Vol.12, No.2, pp.109-118 https://doi.org/10.1520/GTJ10685J
  10. Craft, D. (2005), "Seepage Chemistry Manual", Report DSO-05-03, US Department of the Interior, Bureau of Reclamation, Dam SafetyTechnology Development Program, Denver, Colorado, p.76
  11. Craft, D., Cain, C. and Sullivan, C. (2006), "Seepage Geochemistry and Mineral Dissolution at Clark Canyon Dam, Pick-Sloan MissouriBasin Project, East Bench Unit, Montana," Technical Memorandum86-6829010, U.S. Department of the Interior - Bureau of Reclamation,Denver, Colorado, p.48
  12. Fam, M. A., Cascante, G., and M. B. Dusseault, M. B. (2002), "Large and Small Strain Properties of Sands Subjected to Local Void Increase", Journal of Geotechnical and Geoenvironmental Engineering, Vol.128, No.12, pp.1018-1025 https://doi.org/10.1061/(ASCE)1090-0241(2002)128:12(1018)
  13. Gu$\dot{e}$eguen, Y. and Palciauskas V. (1994), Introduction to the Physicsof rocks, Princeton University Press, Princeton, p.294
  14. Hillel, D. (2004), "Encyclopedia of Soils in the Environment." Academic Press, Volume 1
  15. Ismail, M. A., Joer, H. A., and Randolph, M. F. (2002b), "Cementation of porous materials using calcite", Geotechnique, Vol.52, No.5, pp.313-324 https://doi.org/10.1680/geot.2002.52.5.313
  16. Ismail, M. A., Joer, H. A., Sim, W. H., and Randolph. M. F.(2002a), "Effect of cement type on shear behavior of cementedcalcareous soil", J. Geotech. Engrg., ASCE, Vol.128, No.6, pp.520-529 https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(520)
  17. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,131(9), pp.1063-1070 https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063)
  18. Lee, J. S. and Santamarina, J. C. (2005), "Bender elements:performance and signal interpretation" https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063)
  19. Mikheev, V. V. and Petrukhin, V. P. (1973), "Construction UnderSpecial Soil Condition" Translated from Osnovaniya, Fundamenty Mekhanika Gruntov, No.1, pp.17-20
  20. Santamarina, J. C., Klein, K. A., and Fam, M. A. (2001), Soils and Waves Particulate Materials Behavior, Characterization and Process Monitoring, John Wiley and Sons. New York, p.488
  21. Schnaid, F., Prietto, P. D. M., and Consoil, N. C. (2001), "Charaterizationof cemented sand in triaxial compression", Journal of Geotechnical and Geoenvironmental Engineering, Vol.127, No.10,pp.857-868 https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(857)
  22. Truong, Q. H., Eom, Y. H., and Lee, J. S. (2009), "Stiffnes Characteristics of Soluble Mixtures", Geotechnique (Accepted) https://doi.org/10.1680/geot.8.T.032
  23. Vaid, Y. P. and Nequssey, D. (1984), "Relative density of air and water pluviated sand", Soils and Foundations, Vol.24, No.2, pp.101-105 https://doi.org/10.3208/sandf1972.24.2_101
  24. Weast, R. C. (1988), CRC Handbook of Chemistry and Physics, First Student Edition, CRC Press, Boca Raton.6
  25. Yun, T. S. and Santamarina, J. C. (2005), "Decementation, softening,and collapse: changes in small-strain shear stiffness in ko loading", J. Geotech. Geoenviron. Eng., 131(9), pp.350-358 https://doi.org/10.1061/(ASCE)1090-0241(2005)131:3(350)