• Title/Summary/Keyword: elastic displacement

Search Result 1,039, Processing Time 0.034 seconds

Design and fabrication of unimorph type piezoelectric vibrator (단층형 압전진동자의 설계 및 제작)

  • Jun, Ho-Ik;Kim, Jeong-Hwan;Ji, Seung-Hoon;Park, Tae-Gone
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1317-1318
    • /
    • 2007
  • On this paper, unimorph type piezoelectric vibrator made by attaching ceramic plates on rectangular elastic body, to find the basic characteristic of the actuators. In experiment, elastic body's displacement and resonance frequency were measured according to changes of ceramic's length and elastic body's length. Also, temperature changes were observed according to time. The displacement and resonance frequency were increased when the ceramic's length were increased. When elastic body's length was increased, the displacement was increased. Also, the temperature was increased according to time, but at some time it was saturated and the temperature was not increased any more.

  • PDF

Study on Numerical Analysis of Estimating Elastic Modulus in Rockmass with a Consideration of Rock and Joint Characteristcs (암석 및 절리특성을 고려한 암반의 탄성계수 추정에 관한 수치해석적 연구)

  • Son, Moorak;Lee, Wonki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.229-239
    • /
    • 2013
  • Elastic modulus in rockmass is an important factor to represent the characteristic of rock deformation and is frequently used to estimate the displacement induced due to tunnel excavation or other activities in rockmass. Nevertheless, the study to estimate the elastic modulus, which considers the rock type and joint characteristics (joint shear strength and joint inclination angle), has been done in less frequency. Accordingly, this study is aimed at estimating of elastic modulus in jointed rockmass. For this purpose, numerical parametric studies have been carried out with a consideration of rock and joint conditions. Tunnel displacement results have been used to estimate the elastic modulus of jointed rockmass using the elastic theory of circular tunnel. From this study, the results would be expected to have a great practical use for estimating the displacement induced due to tunnel excavation or other activities in jointed rockmass.

Temperature-Compensative Displacement Sensor based on a Pair of Fiber Bragg Gratings Attached to a Metal Band

  • Kim, Kwang Taek;Kim, Dong Geun
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.82-85
    • /
    • 2018
  • This paper proposes a new temperature-compensative displacement sensor with a pair of fiber Bragg gratings (FBG) attached to the inner and outer surfaces of an elastic metal band. The sensor can be also used as a temperature sensor with high sensitivity. The FBG pair shifted Bragg wavelengths in the same direction according to changes in the temperature. However, because the pressure of the metal band shifted a pair of Bragg wavelengths in the opposite direction, the displacement sensor could compensate for the effect of the temperature change in the proposed FBG pair. Results of the experiments showed that the two FBG displacement sensors responded linearly and symmetrically with respect to the displacement, and the displacement could be obtained using the difference between the two Bragg wavelengths.

CORRELATION BETWEEN J-INTEGRAL AND CMOD IN IMPACT BEHAVIOR OF 3-POINT BEND SPECIMEN

  • Han, M.S.;Cho, J.U.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.337-343
    • /
    • 2006
  • Numerical calculations are made in order to find a possible correlation between the J-integral and the crack mouth opening displacement(CMOD) in dynamic nonlinear fracture experiments of 3-point bend(3PB) specimens. Both elastic-plastic and elastic-viscoplastic materials are considered at different impact velocities. The J-integral may be estimated from the crack mouth opening displacement which can be measured directly from photographs taken during dynamic experiments.

The Characteristic Study of McPherson Suspension Mechanism with Elastic Joints (탄성 조인트를 포함한 맥퍼슨 현가기구의 특성연구)

  • 강희용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.304-309
    • /
    • 1997
  • Elastic elements, at first, were extensively used in suspensions as vibration isolators at joints. Nowadays they are used to improve stability and handling. The design of these elements has become a very important matter since the loading condition of the mechanism gives a mew suspension geometry without any modification. This paper presents an analysis of forces and moments of joints with elastic elements in the McPherson suspension mechanism to evaluate accurately the elastic deformation using the displacement matrix method in conjunction with the equilibrium equations. First the suspension is modeled as a multi-loop spatial rigid-body guidance mechanism which has elastic elements at the hardpoints of the suspension. Then a method and design euqations are developed to analyze the suspension characteristics by the various tire load. Also the displacement matrices and constraint equations for links are appllied to determine the sensitivity of the suspension mechanism. Finally this approach may conduct a realistic design of suspension mechanisms with elastic elements to improve the performance of the automobile under various driving conditions.

  • PDF

Evaluation of Inelastic Displacement Ratios for Smooth Hysteretic Behavior Systems (완만한 이력거동 시스템에 대한 비탄성 변위비의 평가)

  • Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.11-26
    • /
    • 2011
  • The inelastic displacement ratio is defined as the ratio of the peak inelastic displacement to the peak linear elastic displacement. The inelastic displacement ratio allows simple evaluation of the peak inelastic displacement directly from the peak elastic displacement without computation of the inelastic response. Existing research of the inelastic displacement ratio is limited to piece-wise linear systems such as bilinear or stiffness degrading systems. In this paper, the inelastic displacement ratio is investigated for smooth hysteretic behavior systems subjected to near- and far-fault earthquakes. A simple formula of the inelastic displacement ratio is proposed by using a two step procedure of regression analysis.

Evaluation of Young's Modulus of a Cantilever Beam by TA-ESPI (TA-ESPI에 의한 외팔보의 탄성계수 측정)

  • Lee H.S.;Kim K.S.;Kang K.S.;Jung H.C.;Yang S.P.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1115-1119
    • /
    • 2005
  • The paper proposes the elastic modulus evaluation technique of a cantilever beam by vibration analysis based on time-average electronic speckle pattern interferometry (TA-ESPI) with non-contact and nondestructive and Euler-Bernoulli equation. General approaches for the measurement of elastic modulus of thin film are Nano indentation test, Bulge test and Micro-tensile test and so on. They each have strength and weakness in the preparation of test specimen and the analysis of experimental result. ESPI has been developed as a common measurement method for vibration mode visualization and surface displacement. Whole-field vibration mode shape (surface displacement distribution) at a resonance frequency can be visualized by ESPI. And the maximum surface displacement distribution from ESPI is a clue to find the resonance frequency at each vibration mode shape. And the elastic modules of test material can be easily estimated from the measured resonance frequency and Euler-Bernoulli equation. The TA-ESPI vibration analysis technique is able to give the elastic modulus of materials through the simple processing of preparation and analysis.

  • PDF

A STUDY OF HOLOGRAPHIC INTERFEROMETRY ON THE INITIAL REACTION OF MAXILLOFACIAL COMPLEX TO THE INTERMAXILLARY FORCES ON THE ORTHODONTIC ARCHWIRES (교정용 호선에 악간 교정력 적용시 악안면골의 초기반응에 관한 Holographic Interferometry 연구)

  • Jin, Ik-Jae;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.24 no.2
    • /
    • pp.447-476
    • /
    • 1994
  • This study was performed to evaluate the initial reaction of maxillofacial complex to the Class II intermaxillary and the anterior vertical elastic forces on the six types of archwires including multiloop edgewise arch wires(MEAW). A human dry skull was used for this purpose and this investigation was done by holographic interferometry. Based on such investigation, the fringe pattern and the number of fringes of each condition were compared and analyzed. The findings of this study were as follows: 1. As the orthodontic forces increased, the amount of displacement increased. 2. As the orthodontic forces were applied, the fringes were shown not only in the teeth and the maxilla but also in the adjacent bones, i.e., temporal bone, zygomatic bone, nasal bone, frontal bone and sphenoid bone. And the direction of fringe pattern and the number of fringes were different from each other by the sutures. 3. As the long Class II elastic forces were applied, the backward-downward displacements of the anterior teeth and the maxilla were shown, and backward displacement of the former were grater than those of the latter. And backward displacements were greater by the long Class II elastic forces than by the short Class II elastic forces. 4. As the anterior vertical elastic forces were applied, downward displacements of the anterior teeth and the maxilla were shown, and the downward displacements of the former were greater than those of the latter relatively. 5. The downward displacements of the anterior area to the anterior vertical elastic forces of the MEAW were greater than those of other archwires. In addition, the more tip-back bend was applied, the more displacement was seen. 6. As the Class II intermaxillary forces and the enough anterior vertical elastic forces were applied on the MEAW with tip-back bend, there was an intrusive effect of the posterior teeth.

  • PDF

Evaluation of Effective In-Plane Elastic Properties by Imposing Periodic Displacement Boundary Conditions (주기적 변형 경계조건을 적용한 면내 유효 탄성 물성치의 계산)

  • 정일섭
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1950-1957
    • /
    • 2004
  • Analysis for structures composed of materials containing regularly spaced in-homogeneities is usually executed by using averaged material properties. In order to evaluate the effective properties, a unit cell is defined and loaded somehow, and its response is investigated. The imposed loading, however, should accord to the status of unit cells immersed in the macroscopic structure to secure the accuracy of the properties. In this study, mathematical description for the periodicity of the displacement field is derived and its direct implementation into FE models of unit cell is attempted. Conventional finite element code needs no modification, and only the boundary of unit cell should be constrained in a way that the periodicity is preserved. The proposed method is applicable to skew arrayed in-homogeneity problems. Homogenized in-plane elastic properties are evaluated for a few representative cases and the accuracy is examined.

NUMERICAL ANALYSIS OF A LAMINATED COMPOSITE ELASTIC FIELD WITH ROLLER GUIDED PANEL

  • Go, Jae-Gwi;Ali, Mohamed Afsar
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.2
    • /
    • pp.67-78
    • /
    • 2010
  • An elastic field composed of symmetric cross-ply laminated material is analyzed in roller guided panel. The plane stress elasticity problem is formulated in terms of two displacement parameters with mixed boundary conditions. The numerical solution for two displacement parameters is obtained using a finite element method considering a panel of glass/epoxy laminated composite. Some components of stress and displacement at different sections of panel are displayed. The results makes sure that the formulation developed in this study can be applied to analyze the characteristics of elastic field made of laminated composite under any boundary conditions.