• Title/Summary/Keyword: elastic body

Search Result 525, Processing Time 0.027 seconds

Effects of Ballet Bar and Elastic Band Exercise on Body Composition, Physical Fitness and Postural Correction in Middle-Aged Women (발레 바와 탄성밴드의 복합운동이 중년여성의 신체조성, 체력, 자세교정에 미치는 영향)

  • Chae, Jiwoo;Kim, Hyunjun
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.2
    • /
    • pp.109-119
    • /
    • 2020
  • Purpose : The purpose of this study was to investigate the effects of a combined exercise program using a ballet bar and elastic bands on the body composition, physical strength, and postural correction of middle-aged women. Methods : The subjects were 28 middle-aged women with no ballet experience. They were divided into an experimental group (n=14; exercise group) and a control group (n=14; non-exercise group) through random sampling. The experimental group underwent an exercise program using a ballet bar and elastic bands for 50 minutes twice a week for 12 weeks, whereas the control group performed no exercise. The subjects in both group had their body composition, physical fitness, and postural angles measured before and after the intervention. A paired t-test was used to compare pre- and post-test values within each group, and a two-way repeated measures ANOVA was employed to compare pre- and post-test changes between the two groups. Results : Regarding body composition, statistically significant differences in BMI (p<.05), body fat percentage (p<.001), and muscle mass (p<.001) were observed between the two groups before and after the intervention. For physical fitness, the experimental group showed statistically significant increases in quick reflexes (p<.001), muscle endurance (p<.001), and muscle strength (p<.001). For postural correction, the experimental group exhibited statistically significant decreases in all variables: the head (p<.001), shoulder (p<.001), cervical tilt (p<.001), right-left pelvic tilt (p<.001), and anterior-posterior pelvic tilt (p<.001). Conclusion : A combined exercise program using a ballet bar and elastic bands had positive effects on the body composition, physical fitness, and postural correction of middle-aged women.

A Study on the Experimental and Theoretical Analysis About the Elastic Deflections of Die for Cold Forging (냉간 단조용 금형의 탄성 변형에 관한 실험 및 이론적 연구)

  • 이영선;이대근;이정환
    • Transactions of Materials Processing
    • /
    • v.11 no.2
    • /
    • pp.171-178
    • /
    • 2002
  • The elastic deflections of the cold forging die influence the dimensional accuracy of forged parts. The die dimension is continuously changed during the loading, unloading, and ejecting stage. In this paper, we evaluated the elastic deflections of cold forging die during the loading, unloding and ejecting stage with experimental and FEM analysis. Uni-axial strain gages are used to measure elastic strain of die during each forging stage. Strain gages are attached un the upper surface of die. A commercial F.E.M. code, DEFORM$-2D^{TM}$ is used to predict the elastic strains of die, to be compared those by experiments. Two modelling approaches are used to define the reasonable analysis method. The first of the two modelling approaches is to regard the die as rigid body over forging cycle. And then, the die stress is analyzed by loading the die with pressure from the deformed part. The other is to regard the die as elastic body from forging cycle. The elastic strain of tool is calculated and the tool is elastically deformed at each strep. The calculated results under the elastic die assumption are well agreed wish experimental data using the strain gages.

Shock Response Analysis of Guard Robot Considering the Elastic Effect (탄성 효과를 고려한 감시 로봇 모델의 충격 응답 해석)

  • Kim, Jung-Chan;Jeong, W.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.107-110
    • /
    • 2006
  • In this paper, shock response analysis considering the elastic effects of guard robot is performed using computer simulations when a machine gun of guard robot fires a shot continuously. The bodies of guard robot are modelled in flexible multi-body. The results of its analysis is compared with results of rigid bodies. The tools of computer simulation is used in Multi-body dynamics program.

  • PDF

A Study on the Revolution Characteristics of the Ultrasonic Motor with Windmill Type Structure (풍차형 구조를 갖는 초음파 전동기의 회전 특성에 관한 연구)

  • Kim, Jin-Su;Lee, Deok-Chul
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.10
    • /
    • pp.681-686
    • /
    • 1999
  • In this study, a windmill type ultrasonic motor operated by single-phase AC electric field was fabricated, and then revolution characteristics and 3-dimensional vibration mode of the ultrasonic motor were investigated. Brass metal was pressed with umbrella-type using metal mold, then slot of 4 kind was processed at various thickness. It was found that the revolution speed of the ultrasonic motor increased with decreasing the thickness of elastic body. The revolution speed of the ultrasonic motor increased with increasing the slots of elastic body. When the characteristics was measured, applied voltage was changed from $10V_{max}\; to\; 100V_{max}$. Then, revolution was began from $30V_{max}$, if voltage was applied over $90V_{max}$ revolution speed was saturated, and not increased. The maximum revolution speed was 510[rpm] when using elastic body with 6 slots and thickness of 0.15mm. And 3-dimensional displacement mode was rotated clockwise direction.

  • PDF

Study on thermal buckling and post-buckling behaviors of FGM tubes resting on elastic foundations

  • She, Gui-Lin;Ren, Yi-Ru;Xiao, Wan-Shen;Liu, Haibo
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.729-736
    • /
    • 2018
  • This paper studies thermal buckling and post-buckling behaviors of functionally graded materials (FGM) tubes subjected to a uniform temperature rise and resting on elastic foundations via a refined beam model. Compared to the Timoshenko beam theory, the number of unknowns of this model are the same and no correction factors are required. The material properties of the FGM tube vary continuously in the radial direction according to a power function. Two ends of the tube are assumed to be simply supported and in-plane boundary conditions are immovable. Energy variation principle is employed to establish the governing equations. A two-step perturbation method is adopted to determine the critical thermal buckling loads and post-buckling paths of the tubes with arbitrary radial non-homogeneity. Through detailed parametric studies, it can be found that the tube has much higher buckling temperature and post-buckling strength when it is supported by an elastic foundation.

Design and Power Output Characteristics of an EYE-type Piezoelectric Energy Harvester (EYE-type 압전 발전소자의 설계 및 출력특성)

  • Jeong, Seong-Su;Lee, Byeong-Ha;Kang, Shin-chul;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.84-89
    • /
    • 2016
  • We present the results of a study of a piezoelectric generator that generates electricity by the application of tension to an element. A device is named "EYE-type generator". The EYE-type generator consists of a rectangular ceramic and two elastic body plates that are attached to upper and lower surfaces of a ceramic. If tension is applied to both ends of the elastic body, that tension is transformed to pressure on the ceramic through a change in the form of the elastic body, causing a piezoelectric effect whereby electricity is generated by the ceramic. This generator is relatively durable because a forces are not applied directly to the ceramic. We examined dependencies of the generator's output characteristics on the size of the ceramic and elastic body. A resonance and output characteristics were analyzed by using a finite element method. The generator was fabricated based on results of the analysis, and this was attached to a frequency-controllable vibrator to measure the output characteristics. The measured results were compared with results of the simulation, and the results pointed to the practicality of the design.

Impact onto an Ice Floe

  • Khabakhpasheva, Tatyana;Chen, Yang;Korobkin, Alexander;Maki, Kevin
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.146-162
    • /
    • 2018
  • The unsteady problem of a rigid body impact onto a floating plate is studied. Both the plate and the water are at rest before impact. The plate motion is caused by the impact force transmitted to the plate through an elastic layer with viscous damping on the top of the plate. The hydrodynamic force is calculated by using the second-order model of plate impact by Iafrati and Korobkin (2011). The present study is concerned with the deceleration experienced by a rigid body during its collision with a floating object. The problem is studied also by a fully-nonlinear computational-fluid-dynamics method. The elastic layer is treated with a moving body-fitted grid, the impacting body with an immersed boundary method, and a discrete-element method is used for the contact-force model. The presence of the elastic layer between the impacting bod- ies may lead to multiple bouncing of them, if the bodies are relatively light, before their interaction is settled and they continue to penetrate together into the water. The present study is motivated by ship slamming in icy waters, and by the effect of ice conditions on conventional free-fall lifeboats.

Immediate Constituent and Technics of Corsetry in the 20C (20세기 코르세트리의 구성 및 제작기법)

  • 전혜정;김지연
    • The Research Journal of the Costume Culture
    • /
    • v.11 no.4
    • /
    • pp.562-577
    • /
    • 2003
  • The object of my research is to inquiry into the immediate constituent and techniques of underwear after looking into basic theory of underwear, techniques by materials classified according to the matter of elasticity, and studying flat pattern and draping which are basis of corset and brassiere structure focusing on corsetry among underwears and production techniques. Various papers are referenced for theoretical study and the elements and techniques of underwear are analyzed based on photographical materials. This paper concludes as follows. To make the flat pattern of corset and brassiere fit to the body tightly, design dart two times without any space and draw smaller than the body. To support the breast sufficiently, move the side seam 1¼″ to the front panel and the seam should pass the apex in all occasions. For draping, dart should be added into short of elasticity materials in the past but dart is no use these days since the material today is extremely elastic. It is possible now to show the body line with only the seam or a pattern. In a case of elastic material, set the elastic direction to the grain line and have a draping as pulling from the center to the out side. As production technic, for an hem, put a zigzag stitch in elastic materials with a 10-20% short elastic band, pulling the band. Then make 3/16″-1/4″ short inseam.

  • PDF

Body Size Measurement Method Using a Elastic Band and Digital Camera (엘라스틱 밴드와 디지털 카메라를 이용한 신체 치수 측정 방법)

  • Choi, Gi-Rak;Kim, Hyeon-seok;Lee, Jong-Hyeok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.553-556
    • /
    • 2015
  • In almost all of the Hand-made suit plants, while garment cutters are hard to measure the body size by their own, they are not quick. And each of the individual's standard is vague, so it is hard to get a consistency. So it will give the customers some displeasure with the body contact. To improve this kind of problems, in this paper proposes a efficient way that is hard to measure by the general image processing technology to measure when you manufacture a Hand-made suit and measure a body size by wearing a elastic band that has a printed mark that has some information of length and taking a picture of the body by a digital camera.

  • PDF

The Effects of Squat Exercise Using Elastic Bands on Muscle Activity, Arabesque Angle, and Static Balance during Arabesque Posture in a Female Ballet Dancer

  • Ko, Min Gyun;Song, Changho
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.2
    • /
    • pp.172-180
    • /
    • 2022
  • Objective: The purpose of this study was to investigate the effects of squat exercises using elastic bands of ballet dancers on muscle activity, arabesque angle, and static balance of ballet dancers during arabesque posture. Design: A randomized controlled trial Methods: A total of 25young female ballet dancer svoluntarily participated in the study. The participants were randomized to the elastic resistance squat group(n1=13) and body squat group(n2=12). The squats exercise was applied to a total of 12 exercises per four weeks and consisted of 15 times per one set in one to two weeks, 4 sets in three to four weeks. All subjects were evaluated muscle activity, arabesque angle, and static balance during arabesque posture at before-after intervention. All participants were measured muscle activity, arabesque angle, and static balance during arabesque posture at before-after intervention. Results: Elastic resistance squat group and body groups showed a significant increase in the muscle activity, angle, and static balance ability during arabesque posture(p<0.05). In the comparison between the groups, the elastic resistance squat group showed a significant increase in muscle strength, angle, and static balance during arabesque posture (p<0.05). The results showed that the elastic resistance squat exercise was more increased than the body squat exercise in all variables (p<0.05). Conclusions: Therefore, when planning a training program for a ballet dancer, the elastic resistance squat movement can be applied as an exercise method to improve the muscular performance and balance ability of the ballet dancer.