• Title/Summary/Keyword: elastic bending

Search Result 833, Processing Time 0.026 seconds

A Study on the Ultimate Strength Analysis of Damaged Tubular Members (손상원통부재(損傷圓筒部材)의 최종강도(最終强度) 해석(解析)에 관한 연구(硏究))

  • Jeom-K.,Paik;Byung-C.,Shin
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.24-34
    • /
    • 1990
  • In this paper, the formulation of a new simplified finite element is made to analyze the ultimate strength of damaged tubular members subjected to combined axial force and end moment. A damaged tubular member that has the bending deformation and the local dent is modeled by beam elements. Tangent elastic stiffness matrix of a beam element which contains the effect of the geometric nonlinearity is derived by using the updated Lagrangian approach. Here the contribution of the stiffness in the dented area is neglected since its resistance against the external loads is considered to be small. A fully plastic interaction curve of the element under combined loads taking account of the local dent effect is selected as a yielding criterion at each nodal point. Also tangent elasto-plastic stiffness matrix of the element is formulated by plastic node method. Comparison with the present solution and the existing experimental results is made showing that the present method gives quite an accurate solution.

  • PDF

Flexural and Tensile Performance of Strain-Hardening Cement Composite with Synthetic Fibers (합성섬유를 사용한 변형경화형 시멘트 복합체의 휨 및 인장성능)

  • Kim, Sun-Woo;Lee, Min-Jung;Jang, Yong-Heon;Jang, Gwang-Soo;Song, Seon-Hwa;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.925-928
    • /
    • 2008
  • Fiber is an important ingredient in strain-hardening cementitious composite (SHCC), which can control fracture of cementitious composite by bridging action. The properties of reinforcing fiber, as tensile strength, aspect ratio and elastic modulus, have great effect on the fracture behavior of SHCC. To apply SHCC to structural member, SHCC must have economical efficiency and workability as well as own excellent tensile performance. For these purposes, four-point bending and direct tensile tests on SHCC with only hybrid synthetic fibers, total fiber volume fraction, $V_f$, is 1.5%, are carried out. The research emphasis is on the mechanical properties of SHCC made in Polyvinyl alcohol (PVA) and Polyethylene (PE) fibers, and how this affects the composite property, and ultimately its strain-hardening performance. Also, effect of hybrid type and water-cement ratio on the behavior of SHCC was evaluated in this paper.

  • PDF

A simple finite element formulation for large deflection analysis of nonprismatic slender beams

  • AL-Sadder, Samir Z.;Othman, Ra'ad A.;Shatnawi, Anis S.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.647-664
    • /
    • 2006
  • In this study, an improved finite element formulation with a scheme of solution for the large deflection analysis of inextensible prismatic and nonprismatic slender beams is developed. For this purpose, a three-noded Lagrangian beam-element with two dependent degrees of freedom per node (i.e., the vertical displacement, y, and the actual slope, $dy/ds=sin{\theta}$, where s is the curved coordinate along the deflected beam) is used to derive the element stiffness matrix. The element stiffness matrix in the global xy-coordinate system is achieved by means of coordinate transformation of a highly nonlinear ($6{\times}6$) element matrix in the local sy-coordinate. Because of bending with large curvature, highly nonlinear expressions are developed within the global stiffness matrix. To achieve the solution after specifying the proper loading and boundary conditions, an iterative quasi-linearization technique with successive corrections are employed considering these nonlinear expressions to remain constant during all iterations of the solution. In order to verify the validity and the accuracy of this study, the vertical and the horizontal displacements of prismatic and nonprismatic beams subjected to various cases of loading and boundary conditions are evaluated and compared with analytic solutions and numerical results by available references and the results by ADINA, and excellent agreements were achieved. The main advantage of the present technique is that the solution is directly obtained, i.e., non-incremental approach, using few iterations (3 to 6 iterations) and without the need to split the stiffness matrix into elastic and geometric matrices.

Mechanical and thermal properties of polyamide versus reinforced PMMA denture base materials

  • Soygun, Koray;Bolayir, Giray;Boztug, Ali
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.153-160
    • /
    • 2013
  • PURPOSE. This in vitro study intended to investigate the mechanical and thermal characteristics of Valplast, and of polymethyl methacrylate denture base resin in which different esthetic fibers (E-glass, nylon 6 or nylon 6.6) were added. MATERIALS AND METHODS. Five groups were formed: control (PMMA), PMMA-E glass, PMMA-nylon 6, PMMA-nylon 6.6 and Valplast resin. For the transverse strength test the specimens were prepared in accordance with ANSI/ADA specification No.12, and for the impact test ASTM D-256 standard were used. With the intent to evaluate the properties of transverse strength, the three-point bending (n=7) test instrument (Lloyd NK5, Lloyd Instruments Ltd, Fareham Hampshire, UK) was used at 5 mm/min. A Dynatup 9250 HV (Instron, UK) device was employed for the impact strength (n=7). All of the resin samples were tested by using thermo-mechanical analysis (Shimadzu TMA 50, Shimadzu, Japan). The data were analyzed by Kruskal-Wallis and Tukey tests for pairwise comparisons of the groups at the 0.05 level of significance. RESULTS. In all mechanical tests, the highest values were observed in Valplast group (transverse strength: $117.22{\pm}37.80$ MPa, maximum deflection: $27.55{\pm}1.48$ mm, impact strength: $0.76{\pm}0.03$ kN). Upon examining the thermo-mechanical analysis data, it was seen that the E value of the control sample was 8.08 MPa, higher than that of the all other samples. CONCLUSION. Although Valplast denture material has good mechanical strength, its elastic modulus is not high enough to meet the standard of PMMA materials.

A Study on Failure Mode of Pipe Elbows with Wall Thinning (두께 감소된 배관 엘보우의 파손 모드에 대한 연구)

  • Shin, Kyu-In;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.57-62
    • /
    • 2008
  • Difference of failure modes was studied by finite element analysis for elbows with local wall thinning area particularly at inner surface of intrados of the elbow. Longitudinal wall thinning length, minimum thickness were kept constant but circumferential wall thinning width was varied to get $90^{\circ}$, $180^{\circ}$ and $360^{\circ}$ thinning width. Elastic-plastic analysis were carried out under the combined loading conditions of internal pressure and in-plane bending moment closing the elbow. Von Mises stress were obtained from the outer surface central surface location in intrados, extrados and crown parts in elbow. The results showed that the plastic deformation and failure started from the crown location when the thinning width small ($90{\sim}180^{\circ}$). However, plastic collapse started from the intrados location when the thinning width is approaching $360^{\circ}C$. This should be reflected to assess structural integrity of elbows after wall thinning measurement is made.

  • PDF

Exact Tangent Stiffness Matrix and Buckling Analysis Program of Plane Frames with Semi-Rigid Connections (부분강절로 연결된 평면뼈대구조의 엄밀한 접선강도행렬 및 안정성 해석프로그램 개발)

  • Min, Byoung Cheol;Kyung, Yong Soo;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.81-92
    • /
    • 2008
  • Generally the connection of members is defined as hinge or rigid. But, real joints on structure have to be considered semi-rigid connections because this permits relative rotation for members on joints. The purpose of this study is to derive a generalized tangential stiffness matrix of frames with semi-rigid connections and to develop a buckling analysis program. For the exact stiffness matrix, an accurate displacement field is introduced using an equilibrium equation for beam-columns under the bending and axial forces. Also, stability functions that consider sway deformation and force-displacement relations with rotational spring on ends were defined. In order to illustrate the accuracy of this study and the characteristics of semi-rigid for system buckling load, samples of angle-, portal- and 3-story frames with semi-rigid connections are presented, where the proposed approach is found to be in excellent agreement with other research results. Meanwhile, the application of codes such as Eurocode 3 and LRFD led to significant inaccuracies.

Measurement of Adhesion Strength and Nanoindentation of Metal Interconnections of Al/Ni and TiW/Ni Layers Formed on Glass Substrate (유리기판 위에 형성된 Al/Ni 및 TiW/Ni 다층 금속배선막의 계면 접합력 및 나노압입특성 평가)

  • Joe, Chul Min;Kim, Jae Ho;Hwang, So Ri;Yun, Yeo Hyeon;Oh, Yong Jun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1116-1122
    • /
    • 2010
  • Metal interconnections of multilayer Al/Ni and TiW/seed-Ni/Ni were formed on glass, and the adhesion strength and nanoindentation response of the composite layers were evaluated. The Al/Ni multilayer was formed by an anodic bonding of glass to Al and subsequent electroless plating of Ni, while the TiW/Ni multilayer was fabricated by sputter deposition of TiW and seed-Ni onto glass and electroless plating of Ni. Because of the diffusion of aluminum into glass during the anodic bonding, anodically bonded glass/Al joint exhibited greater interfacial strength than the sputtered glass/TiW one. The Al/Ni on glass also showed excellent resistance against delamination by bending deformation compared to the TiW/seed-Ni/Ni on glass. From the nanoindentation experiment of each metal layer on glass, it was found that the aluminum layer had extremely low hardness and elastic modulus similar to the glass substrate and played a beneficial role in the delamination resistance by lessening stress intensification at the joint. The indentation data of the multilayers also supported superior joint reliability of the Al/Ni to glass compared to that of the TiW/seed-Ni/Ni to glass.

Effect of diameter of MWCNT reinforcements on the mechanical properties of cement composites

  • Zaheer, Mohd Moonis;Jafri, Mohd Shamsuddin;Sharma, Ravi
    • Advances in concrete construction
    • /
    • v.8 no.3
    • /
    • pp.207-215
    • /
    • 2019
  • Application of nanotechnology can be used to tailor made cementitious composites owing to small dimension and physical behaviour of resulting hydration products. Because of high aspect ratio and extremely high strength, carbon nanotubes (CNTs) are perfect reinforcing materials. Hence, there is a great prospect to use CNTs in developing new generation cementitious materials. In the present paper, a parametric study has been conducted on cementitious composites reinforced by two types of multi walled carbon nanotubes (MWCNTs) designated as Type I CNT (10-20 nm outer dia.) and Type II CNT (30-50 nm outer dia.) with various concentrations ranging from 0.1% to 0.5% by weight of cement. To evaluate important properties such as flexural strength, strain to failure, elastic modulus and modulus of toughness of the CNT admixed specimens at different curing periods, flexural bending tests were performed. Results show that composites with Type II CNTs gave more strength as compared to Type I CNTs. The highest increase in strength (flexural and compressive) is of the order of 22% and 33%, respectively, compared to control samples. Modulus of toughness at 28 days showed highest improvement of 265% for Type II 0.3% CNT composites. It is obvious that an optimum percentage of CNT could exists for composites to achieve suitable reinforcement behaviour and desired strength properties. Based on the parametric study, a tentative optimum CNT concentration (0.3% by weight of cement) has been proposed. Scanning electron microscope image shows perfect crack bridging mechanism; several of the CNTs were shown to act as crack arrestors across fine cracks along with some CNTs breakage.

Modeling of the friction in the tool-workpiece system in diamond burnishing process

  • Maximov, J.T.;Anchev, A.P.;Duncheva, G.V.
    • Coupled systems mechanics
    • /
    • v.4 no.4
    • /
    • pp.279-295
    • /
    • 2015
  • The article presents a theoretical-experimental approach developed for modeling the coefficient of sliding friction in the dynamic system tool-workpiece in slide diamond burnishing of low-alloy unhardened steels. The experimental setup, implemented on conventional lathe, includes a specially designed device, with a straight cantilever beam as body. The beam is simultaneously loaded by bending (from transverse slide friction force) and compression (from longitudinal burnishing force), which is a reason for geometrical nonlinearity. A method, based on the idea of separation of the variables (time and metric) before establishing the differential equation of motion, has been applied for dynamic modeling of the beam elastic curve. Between the longitudinal (burnishing force) and transverse (slide friction force) forces exists a correlation defined by Coulomb's law of sliding friction. On this basis, an analytical relationship between the beam deflection and the sought friction coefficient has been obtained. In order to measure the deflection of the beam, strain gauges connected in a "full bridge" type of circuit are used. A flexible adhesive is selected, which provides an opportunity for dynamic measurements through the constructed measuring system. The signal is proportional to the beam deflection and is fed to the analog input of USB DAQ board, from where the signal enters in a purposely created virtual instrument which is developed by means of Labview. The basic characteristic of the virtual instrument is the ability to record and visualize in a real time the measured deflection. The signal sampling frequency is chosen in accordance with Nyquist-Shannon sampling theorem. In order to obtain a regression model of the friction coefficient with the participation of the diamond burnishing process parameters, an experimental design with 55 experimental points is synthesized. A regression analysis and analysis of variance have been carried out. The influence of the factors on the friction coefficient is established using sections of the hyper-surface of the friction coefficient model with the hyper-planes.

Flexural behavior of beams in steel plate shear walls

  • Qin, Ying;Lu, Jin-Yu;Huang, Li-Cheng-Xi;Cao, Shi
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.473-481
    • /
    • 2017
  • Steel plate shear wall (SPSW) system has been increasingly used for lateral loads resisting system since 1980s when the utilization of post-buckling strength of SPSW was realized. The structural response of SPSWs largely depends on the behavior of the surrounded beams. The beams are normally required to behave in the elastic region when the SPSW fully buckled and formed the tension field action. However, most modern design codes do not specify how this requirement can be achieved. This paper presents theoretical investigation and design procedures of manually calculating the plastic flexural capacity of the beams of SPSWs and can be considered as an extension to the previous work by Qu and Bruneau (2011). The reduction in the plastic flexural capacity of beam was considered to account for the presence of shear stress that was altered towards flanges at the boundary region, which can be explained by Saint-Venant's principle. The reduction in beam web was introduced and modified based on the research by Qu and Bruneau (2011), while the shear stress in the web in this research is excluded due to the boundary effect. The plastic flexural capacity of the beams is given by the superposition of the contributions from the flanges and the web. The developed equations are capable of predicting the plastic moment of the beams subjected to combined shear force, axial force, bending moment, and tension fields induced by yielded infill panels. Good agreement was found between the theoretical results and the data from previous research for flexural capacity of beams.