• 제목/요약/키워드: elastic bending

Search Result 827, Processing Time 0.027 seconds

Influence Line of Three- span Continuous Curved Box-Girder Bridge using Elastic Equation (탄성방정식을 이용한 3경간 연속곡선교의 영향선에 관한 연구)

  • 장병순;장준환;김수정
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.423-434
    • /
    • 2001
  • In this paper, a three-span continuous box girder is analysed by using elastic equation based on energy method, concerning the behaviour with the effects of bending and pure torsional moment. The statically indeterminate forces of a three-span continuous curved box girder are calculated by applying the principle of least work to this elastic equation. The influence line of shear force, bending moment, pure torsion, displacement and angle of rotation due to unit vortical load and unit torque for curved box girder are obtained. The internal forces of the curved box girder which the actual load is applied can be calculated using the influence line obtained from this study.

  • PDF

Elastic-Plastic Finite Element Analysis of Deep Drawings of Circular and Square Cups Considering Bending (굽힘을 고려한 원형 및 정사각형컵 딥드로잉 공정의 탄소성 유한요소해석)

  • 심현보;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1738-1750
    • /
    • 1994
  • Both cylindrical cup drawing and square cup drawing are analyzed using membrane analysis as well as shell analysis by the elastic-plastic finite element method. An incremental formulation incorporating the effect of large deformation and normal anisotropy is used for the analysis of elastic-plastic non-steady deformation. The computed results are compared with the existing experimental results to show the validity of the analysis. Comparisons are made in the punch load and distribution of thickness strain between the membrane analysis and the shell analysis for both cylindrical and square cup drawing processes. In punch load, both analyses show very little difference and also show generally good agreement with the experiment. For the cylindrical cup deep drawing, the computed thickness strain of a membrane analysis, however, shows a wide difference with the experiment. In the shell analysis, the thickness strain shows good agrement with the experiment. For the square cup deep drawing, both membrane and shell analyses show a wide difference with experiment, this may be attributable to the ignorance of the shear deformation. Concludingly, it has been shown that the membrane approach shows a limitation for the deep drawing process in which the effect of bending is not negligible and more exact information on the thickness strain distribution is required.

Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory

  • Beldjelili, Youcef;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.755-786
    • /
    • 2016
  • The hygro-thermo-mechanical bending behavior of sigmoid functionally graded material (S-FGM) plate resting on variable two-parameter elastic foundations is discussed using a four-variable refined plate theory. The material characteristics are distributed within the thickness direction according to the two power law variation in terms of volume fractions of the constituents of the material. By employing a four variable refined plate model, both a trigonometric distribution of the transverse shear strains within the thickness and the zero traction boundary conditions on the top and bottom surfaces of the plate are respected without utilizing shear correction factors. The number of independent variables of the current formulation is four, as against five in other shear deformation models. The governing equations are deduced based on the four-variable refined plate theory incorporating the external load and hygro-thermal influences. The results of this work are compared with those of other shear deformation models. Various numerical examples introducing the influence of power-law index, plate aspect ratio, temperature difference, elastic foundation parameters, and side-to-thickness ratio on the static behavior of S-FGM plates are investigated.

Dynamic characteristics of elastic beams subjected to traffic loads

  • Tang, Chia-Chih;Wang, Yang-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.13 no.2
    • /
    • pp.211-230
    • /
    • 2002
  • The objective of this study is to investigate the dynamic behavior of elastic beams subjected to moving loads. Although analytical methods are available, they have limitations with respect to complicated structures. The use of computer technology in recent years is an effective way to solve the problem; thus using the latest technology this study establishes a finite-element solution procedure to investigate dynamic behaviors of a typical elastic beam having a set of constant geometric properties and various span lengths. Both the dead load of the beam and traffic load are applied in which the traffic load is considered a concentrated moving force with various traveling passage speeds on the beam. Dynamic behaviors including deflection, shear, and bending moment due to moving loads are obtained by both analytical and finite element methods; for simple structures, they have an excellent agreement. The numerical results show that based on analytical methods the fundamental mode is good enough to estimate the dynamic deflection along the beam, but is not sufficient to simulate the total response of the shear force or the bending moment. The linear dynamic behavior of the elastic beams subjected to multiple exciting loads can easily be found by linear superposition, and the geometric nonlinear results caused by large deformation and axial force of the beam are always underestimated with only a few exceptions which are indicated. In order to make the results useful, they have been nondimensionalized and presented in graphical form.

Novel four-unknowns quasi 3D theory for bending, buckling and free vibration of functionally graded carbon nanotubes reinforced composite laminated nanoplates

  • Khadir, Adnan I.;Daikh, Ahmed Amine;Eltaher, Mohamed A.
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.621-640
    • /
    • 2021
  • Effect of thickness stretching on mechanical behavior of functionally graded (FG) carbon nanotubes reinforced composite (CNTRC) laminated nanoplates resting on elastic foundation is analyzed in this paper using a novel quasi 3D higher-order shear deformation theory. The key feature of this theoretical formulation is that, in addition to considering the thickness stretching effect, the number of unknowns of the displacement field is reduced to four, and which is more than five in the other models. Single-walled carbon nanotubes (SWCNTs) are the reinforced elements and are distributed with four power-law functions which are, uniform distribution, V-distribution, O-distribution and X-distribution. To cover various boundary conditions, an analytical solution is developed based on Galerkin method to solve the governing equilibrium equations by considering the nonlocal strain gradient theory. A modified two-dimensional variable Winkler elastic foundation is proposed in this study for the first time. A parametric study is executed to determine the influence of the reinforcement patterns, power-law index, nonlocal parameter, length scale parameter, thickness and aspect ratios, elastic foundation, thermal environments, and various boundary conditions on stresses, displacements, buckling loads and frequencies of the CNTRC laminated nanoplate.

Novel quasi 3D theory for mechanical responses of FG-CNTs reinforced composite nanoplates

  • Alazwari, Mashhour A.;Daikh, Ahmed Amine;Eltaher, Mohamed A.
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.117-137
    • /
    • 2022
  • Effect of thickness stretching on free vibration, bending and buckling behavior of carbon nanotubes reinforced composite (CNTRC) laminated nanoplates rested on new variable elastic foundation is investigated in this paper using a developed four-unknown quasi-3D higher-order shear deformation theory (HSDT). The key feature of this theoretical formulation is that, in addition to considering the thickness stretching effect, the number of unknowns of the displacement field is reduced to four, and which is more than five in the other models. Two new forms of CNTs reinforcement distribution are proposed and analyzed based on cosine functions. By considering the higher-order nonlocal strain gradient theory, microstructure and length scale influences are included. Variational method is developed to derive the governing equation and Galerkin method is employed to derive an analytical solution of governing equilibrium equations. Two-dimensional variable Winkler elastic foundation is suggested in this study for the first time. A parametric study is executed to determine the impact of the reinforcement patterns, nonlocal parameter, length scale parameter, side-t-thickness ratio and aspect ratio, elastic foundation and various boundary conditions on bending, buckling and free vibration responses of the CNTRC plate.

Bending of an isotropic non-classical thin rectangular plate

  • Fadodun, Odunayo O.;Akinola, Adegbola P.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.437-440
    • /
    • 2017
  • This study investigates the bending of an isotropic thin rectangular plate in finite deformation. Employing hyperelastic material of John's type, a non-classical model which generalizes the famous Kirchhoff's plate equation is obtained. Exact solution for deflection of the plate under sinusoidal loads is obtained. Finally, it is shown that the non-classical plate under consideration can be used as a replacement for Kirchhoff's plate on an elastic foundation.

Buckling Behavior of Reinforced Concrete Columns under Biaxial Loading (2축 휨을 받는 철근 콘크리트 기둥의 좌굴거동)

  • 김진근;이상순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.480-485
    • /
    • 1996
  • A numerical method for perdicting the behavior of a reinforced concrete column under biaxial loading is proposed, using the layered finite element method. Concrete is assumed to exhibit strain softening and steel reinforcement is elastic-plastic. The bending theory assumptions are used and bond slip of reinforcement is meglected. To perdict the entire load-deformation characteristics, displacement control method is used. This method consider not only combined effect due to axial load and bending moment but also that due to bending moments. Predicted behaviors of reinforced concrete columns under biaxial loading through the numerical method proposed in this study show good agreements with test results.

  • PDF

Strength Properties and Elastic Waves Characteristics of Silicon Carbide with Damage-Healing Ability (손상치유 능력을 가지는 탄화규소의 강도 특성과 탄성파 특성)

  • KIM MI-KYUNG;AHN BYUNG-GUN;KIM JIN-WOOK;PARK IN-DUCK;AHN SEOK-HWAN;NAM KI-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.337-341
    • /
    • 2004
  • Engineering ceramics have superior heat resistance, corrosion resistance, and wear resistance. Consequently, these art significant candidates for hot-section structural components of heat engine and the inner containment of nuclear fusion reactor. Besides, some of them have the ability to heal cracks and great benefit can be anticipated with great benefit the structural engineering field. Especially, law fracture toughness of ceramics supplement with self-healing ability. In the present study, we have been noticed some practically important points for the healing behavior of silicon nitride, alumina, mullite with SiC particle and whisker. The presence of silicon carbide (SiC) in ceramic compound is very important for crack-healing behavior. However, self-healing of SiC has not been investigated well in detail yet. In this study, commercial SiC was selected as sample, which can be anticipated in the excellent crack healing ability. The specimens were produced three-point bending specimen with a critical semi-circular crack of which size that is about $50-700{\mu}m$. Three-point bending test and static fatigue test were performed cracked and healed SiC specimens. A monotonic bending load was applied to cracked specimens by three-point loading at different temperature. The purpose of this paper is to report Strength Properties and Elastic Waves Characteristics of Silicon Carbide with Crack Healing Ability.

  • PDF

2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models

  • Merzoug, Mostafa;Bourada, Mohamed;Sekkal, Mohamed;Abir, Ali Chaibdra;Chahrazed, Belmokhtar;Benyoucef, Samir;Benachour, Abdelkader
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.361-374
    • /
    • 2020
  • This paper is concerned with the thermoelastic bending of FG beams resting on two-layer elastic foundations. One of these layers is Winkler springs with a variable modulus while the other is considered as a shear layer with a constant modulus. The beams are considered simply supported and subjected to thermo-mechanical loading. Temperature-dependent material properties are considered for the FG beams, which are assumed to be graded continuously across the panel thickness. The used theories contain undetermined integral terms which lead to a reduction of unknowns functions. Several micromechanical models are used to estimate the effective two-phase FG material properties as a function of the particles' volume fraction considering thermal effects. Analytical solutions for the thermo-mechanical bending analysis are obtained based on Navier's method that satisfies the boundary conditions. Finally, the numerical results are provided to reveal the effect of explicit micromechanical models, geometric parameters, temperature distribution and elastic foundation parameters on the thermoelastic response of FG beams.