• 제목/요약/키워드: elastic behavior

검색결과 2,120건 처리시간 0.033초

지오그리드로 보강한 고속철도 노반의 거동 특성 (Behavior of High-Speed Rail Roadbed Reinforced by Geogrid under Cyclic Loading)

  • 신은철;김두환
    • 한국철도학회논문집
    • /
    • 제3권2호
    • /
    • pp.84-91
    • /
    • 2000
  • The general concept of reinforced roadbed in the high-speed railway is to cope with the soft ground for the bearing capacity and settlement of foundation soil. The cyclic plate load tests were performed to determine the behavior of reinforced ground with multiple layers of geogrid underlying by soft soil. With the test results, the bearing capacity ratio, elastic rebound ratio, subgrade modulus and the strain of geogrids under loading were investigated. Based on these plate load tests, laboratory model tests under cyclic loading were conducted to estimate the effect of geogrid reinforcement in particular for the high-speed rail roadbed. The permanent settlement and the behavior of earth pressure in reinforced roadbed subjected to a combination of static and dynamic loading are presented.

  • PDF

소성거동을 고려한 원주방향 관통균열 열림에 미치는 압력유기굽힘의 구속효과 평가 모델 (Evaluation Model for Restraint Effect of Pressure Induced Bending on the Circumferential Through-Wall Crack Opening Considering Plastic Behavior)

  • 김진원
    • 대한기계학회논문집A
    • /
    • 제30권9호
    • /
    • pp.1134-1141
    • /
    • 2006
  • This paper presents the model for evaluating restraint effect of pressure induced bending (PIB) on the circumferential through-wall crack opening displacement (COD), which considers plastic behavior of crack. This study performed three-dimensional elastic-plastic finite element (FE) analyses for different crack angle, restraint length, pipe geometry, stress level, and material conditions, and evaluated the influence of each parameter on the PIB restraint effect on COD. Based on these evaluations and additional perfectly-plastic FE analyses, a closed-form model to evaluate the restraint effect of PIB on the plastic crack opening of circumferential through-wall crack, was proposed as functions of crack angle, restraint length, radius to thickness ratio, axial stress corresponding to an internal pressure, and normalized COD evaluated from linear-elastic crack opening condition.

The uniaxial strain test - a simple method for the characterization of porous materials

  • Fiedler, T.;Ochsner, A.;Gracio, J.
    • Structural Engineering and Mechanics
    • /
    • 제22권1호
    • /
    • pp.17-32
    • /
    • 2006
  • The application of cellular materials in load-carrying and security-relevant structures requires the exact prediction of their mechanical behavior, which necessitates the development of robust simulation models and techniques based on appropriate experimental procedures. The determination of the yield surface requires experiments under multi-axial stress states because the yield behavior is sensitive to the hydrostatic stress and simple uniaxial tests aim only to determine one single point of the yield surface. Therefore, an experimental technique based on a uniaxial strain test for the description of the influence of the hydrostatic stress on the yield condition in the elastic-plastic transition zone at small strains is proposed and numerically investigated. Furthermore, this experimental technique enables the determination of a second elastic constant, e.g., Poisson's ratio.

An analytical solution for equations and the dynamical behavior of the orthotropic elastic material

  • Ramady, Ahmed;Atia, H.A.;Mahmoud, S.R.
    • Advances in concrete construction
    • /
    • 제11권4호
    • /
    • pp.315-321
    • /
    • 2021
  • In this article, an analytical solution of the dynamical behavior in an orthotropic non-homogeneity elastic material using for elastodynamics equations is investigated. The effects of the magnetic field, the initial stress, and the non-homogeneity on the radial displacement and the corresponding stresses in an orthotropic material are investigated. The analytical solution for the elastodynamic equations has solved regarding displacements. The variation of the stresses, the displacement, and the perturbation magnetic field have shown graphically. Comparisons are made with the previous results in the absence of the magnetic field, the initial stress, and the non-homogeneity. The present study has engineering applications in the fields of geophysical physics, structural elements, plasma physics, and the corresponding measurement techniques of magneto-elasticity.

벼의 리올러지 특성(特性)(II) -곡립(穀粒)의 압축(壓縮)크리이프- (Rheological Properties of Rough Rice (II) -Compressive Creep of Rough Rice Kernel-)

  • 김만수;김성래;박종민
    • Journal of Biosystems Engineering
    • /
    • 제15권3호
    • /
    • pp.219-229
    • /
    • 1990
  • The compression creep behavior of grains when loaded depends not only on load but also on duration of load application. The most common methods of studying the load-time characteristics of agricultural products is by employing rheological models such as Burger's model. However it is sometimes not sufficient to describe the viscoelastic behavior of grains to be Burger's model. For this reason, this study was conducted to develop the rheological model which represented the creep compliance response of the rough rice kernel and was a function of initial stress applied and time. The effects of the initial stress applied and the moisture content on the compression creep behavior of the rough rice kernel were analyzed. The results were obtained from the study as follows: 1. Since the viscoelastic behavior of the rough rice kernel was nonlinear, the transient and steady state creep compliance was satisfactorily modelled as follows: $$J({\sigma},t)=A{\sigma}^B[C+Dt-exp(-Ft)]$$ But, for the every stress applied, the compression creep behavior of the samples tested can be well described by Burger's model respectively. 2. The creep compliance, the instantaneous elastic strain, the retarded elastic strain and the viscous strain of the sample tested generally increased in magnitude with increasing the applied initial stress and the moisture content used in the tests. At low moisture content, the creep compliance for the Japonica-type rough rice kernel Was a little higher than those for Indica-type and at high moisture content, vice versa at high moisture content. 3. The retardation times of the samples had not an uniform tendency by the initial stress and the moisture content. The retardation times ranged from 0.66 to 6.76 seconds, and the creep progressed from transient to steady state at a relatively high rate. 4. The less viscous strain than the instantaneous elastic strain for the samples tested indicated that rough rice kernel behaved as a viscoelastic body characterized by elasticity than viscosity.

  • PDF

Measurement of Elastic Constants by Simultaneously Sensing Longitudinal and Shear Waves as an Overlapped Signal

  • Seo, Hogeon;Song, Dong-Gi;Jhang, Kyung-Young
    • 비파괴검사학회지
    • /
    • 제36권2호
    • /
    • pp.138-148
    • /
    • 2016
  • Measurement of elastic constants is crucial for engineering aspects of predicting the behavior of materials under load as well as structural health monitoring of material degradation. Ultrasonic velocity measurement for material properties has been broadly used as a nondestructive evaluation method for material characterization. In particular, pulse-echo method has been extensively utilized as it is not only simple but also effective when only one side of the inspected objects is accessible. However, the conventional technique in this approach measures longitudinal and shear waves individually to obtain their velocities. This produces a set of two data for each measurement. This paper proposes a simultaneous sensing system of longitudinal waves and shear waves for elastic constant measurement. The proposed system senses both these waves simultaneously as a single overlapped signal, which is then analyzed to calculate both the ultrasonic velocities for obtaining elastic constants. Therefore, this system requires just half the number of data to obtain elastic constants compared to the conventional individual measurement. The results of the proposed simultaneous measurement had smaller standard deviations than those in the individual measurement. These results validate that the proposed approach improves the efficiency and reliability of ultrasonic elastic constant measurement by reducing the complexity of the measurement system, its operating procedures, and the number of data.

탄성 경계를 고려한 I형보의 좌굴 거동 (Buckling Behavior of I-Beam with the Elastic Support)

  • 강영종;이규세;임남형
    • 한국강구조학회 논문집
    • /
    • 제11권2호통권39호
    • /
    • pp.201-212
    • /
    • 1999
  • 탄성 경계에 의해 지지된 보는 브레이스된 보나 철도 궤도와 같은 구조 부재로서 사용된다. 이러한 탄성 경계는 단면의 임의의 점에 위치할 수 있다. 본 논문은 탄성 경계를 가진 보의 탄성 좌굴에 미치는 경계의 편심과 강성의 효과를 고찰하였다. 유한 요소 정식화를 통해 탄성 경계를 가진 보-요소와 해석 프로그램을 개발하였다. 탄성 경계는 탄성 스프링 요소를 사용하였으며 탄성 경계의 편심을 고려하기 위하여 옵셋(offset) 기법을 사용하였다. 보-요소는 딤 자유도를 고려하여, 요소당 14개의 자유도를 갖는 직선 보-요소를 사용하였다. 많은 수치 해석을 통해, 본 연구에서 개발한 좌굴 해석 프로그램이 탄성 경계를 가진 보의 탄성 좌굴 하중과 모드를 정확하게 산출함을 알 수 있다.

  • PDF

STIFFNESS AND POROSITY EVALUATION USING FIELD VELOCITY RESISTIVITY PROBE

  • Lee, Jong-Sub;Yoon, Hyung-Koo;Choi, Yong-Kyu
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회 3차
    • /
    • pp.24-30
    • /
    • 2010
  • The void ratio and elastic moduli are design parameters used in geotechnical engineering to understand soil behavior. Elastic and electromagnetic waves have been used to evaluate the various soil characteristics due to high resolution. The objective of this study is to evaluate the void ratio and elastic moduli based on elastic wave velocities and electrical resistivity. The Field Velocity Resistivity Probe (FVRP) is developed to obtain the elastic and electromagnetic wave profiles of soil during penetration. The Piezoelectric Disk Elements (PDE) and Bender Elements (BE) are used as transducers for measuring the elastic wave velocities such as compressional and shear wave velocities. The Electrical Resistivity Probe (ERP) is also installed for capturing the electrical resistivity profile. The application test is carried out on the southern coast of the Korean peninsula. The field tests are performed at a depth of 6~20 m, at 10 cm intervals for measuring elastic wave velocities and at 0.5cm intervals for measuring electrical resistivity. The elastic moduli such as constraint and shear moduli are calculated by using measured elastic wave velocities. The void ratios are also evaluated based on the elastic wave velocities and the electrical resistivity. Furthermore, the converted void ratios by using FVRP are compared with the volumetric void ratio obtained by a standard consolidation test. The comparison shows that the void ratios based on the FVPR match the volume based void ratio well. This study suggests that the FVRP may be a useful device to effectively determine the elastic moduli and void ratio in the field.

  • PDF

진동전단유동장에서 점탄성 반고형 연고기제(바셀린)의 레올로지 거동 (Rheological Behavior of Viscoelastic Semi-Solid Ointment Base (Vaseline) in Oscillatory Shear Flow Fields)

  • 송기원;장갑식
    • Journal of Pharmaceutical Investigation
    • /
    • 제36권1호
    • /
    • pp.31-38
    • /
    • 2006
  • Using a Rheometries Dynamic Analyzer (RDA II), the dynamic viscoelastic properties of a semi-solid ointment base (vaseline) in large amplitude oscillatory shear flow fields were measured over a temperature range of $25{\sim}45^{\circ}C$ and the linear viscoelastic behavior in small amplitude oscillatory shear flow fields was investigated over a wide range of angular frequencies. In this article, the nonlinear viscoelastic behavior was reported from the experimentally obtained data and the effect of temperature on this behavior was discussed in detail. In addition, the angular frequency and temperature dependencies of a linear viscoelastic behavior were explained. Finally, the applicability of a time-temperature superposition principle originally developed for polymeric materials was examined using a shift factor. Main results obtained from this study can be summarized as follows : (1) At very small strain amplitude region, vaseline shows a linear viscoelastic behavior independent of the imposed deformation magnitudes. Above a critical strain amplitude $({\gamma}_{0}=0.1{\sim}0.2%)$, however, vaseline exhibits a nonlinear viscoelastic behavior ; indicating that both the storage modulus and dynamic viscosity are sharply decreased with increasing deformation magnitude. (2) In large amplitude oscillatory shear flow fields, an elastic behavior (storage modulus) has a stronger strain amplitude dependence and begins to show a nonlinear behavior at a smaller strain amplitude region than does a viscous behavior (dynamic viscosity). (3) In small amplitude oscillatory shear flow fields, the storage modulus as well as the loss modulus are continuously increased as an increase in angular frequency and an elastic nature is always superior to a viscous behavior over a wide range of angular frequencies. (4) A time-temperature superposition principle can successfully be applicable to vaseline. This finding allows us to estimate the dynamic viscoelastic behavior of vaseline over an extraordinarily extended range (11 decades) of angular frequencies inaccessible from the experimentally measured range (4 decades).

지반의 비선형성을 고려한 암반지진에 의한 구조물의 수평방향 탄성거동 (Elastic Horizontal Response of a Structure to Bedrock Earthquake Considering the Nonlinearity of the Soil Layer)

  • 김용석
    • 한국지진공학회논문집
    • /
    • 제6권3호
    • /
    • pp.53-62
    • /
    • 2002
  • 지반조건은 구조물의 지진거동에 매우 큰 영향을 미치고 성능에 기준한 내진설계에 중요한 요소이다. 이 논문에서는 지진에 의한 지반의 비선형성을 포함한 지반의 비선형성이 구조물의 탄성지진거동에 미치는 영향을 지반 구조물 일괄해석 유한요소법과 지반의 비선형성을 구현하기 위해 Ramberg-Osgood 토질모델에 대한 근사선형 반복해석법으로 연구하였다. 연구는 말뚝기초의 유무를 고려한 주기가 변하는 선형 단자유도계에 지표에서 기록된 1940년 EI Centre지진을 적용하여 수행하였다. 연구결과에 의하면 연약지반의 비선형 특성 영향이 구조물의 탄성 지진거동에 매우 중요하곡 성능에 기준한 지반의 비선형성을 고려한 구조물의 내진설계가 필요하다는 것을 잘 보여주고 있다.