DOI QR코드

DOI QR Code

The uniaxial strain test - a simple method for the characterization of porous materials

  • Fiedler, T. (Centre for Mechanical Technology and Automation, University of Aveiro) ;
  • Ochsner, A. (Centre for Mechanical Technology and Automation, University of Aveiro) ;
  • Gracio, J. (Department of Mechanical Engineering, University of Aveiro)
  • Received : 2005.02.25
  • Accepted : 2005.10.17
  • Published : 2006.01.10

Abstract

The application of cellular materials in load-carrying and security-relevant structures requires the exact prediction of their mechanical behavior, which necessitates the development of robust simulation models and techniques based on appropriate experimental procedures. The determination of the yield surface requires experiments under multi-axial stress states because the yield behavior is sensitive to the hydrostatic stress and simple uniaxial tests aim only to determine one single point of the yield surface. Therefore, an experimental technique based on a uniaxial strain test for the description of the influence of the hydrostatic stress on the yield condition in the elastic-plastic transition zone at small strains is proposed and numerically investigated. Furthermore, this experimental technique enables the determination of a second elastic constant, e.g., Poisson's ratio.

Keywords

References

  1. Ashby, M.F., Evans, A., Fleck, N.A, Gibson, L.J., Hutchinson, J.W. and Wadley, H.N.G. (2000), Metal Foams: A Design Guide, Butterworh-Heinemann, Boston
  2. Balch, D.K. and Dunand, D.C. (2002), Processing and Properties of Lightweight Cellular Metals and Structures, TMS, Warrendale
  3. Chen, W.F. and Hahn, D.J. (1988), Plasticity for Structural Engineers, Springer Verlag, New York
  4. Chengfeng, Y., Weimin, L., Yunxia, C. and Laigui, Y. (2001), 'Room-temperature ionic liquids: A novel versatile lubricant', Chem. Commun., 21, 2244-2245
  5. Deshpande, V.S. and Fleck, N.A. (2000), 'Isotropic constitutive models for metallic foams', J. Mech. Phys. Solids, 48, 1253-1283 https://doi.org/10.1016/S0022-5096(99)00082-4
  6. Deshpande, V.S. and Fleck, N.A. (2001), 'Isotropic constitutive models for metallic foams', J. Mech. Phys. Solids, 48, 1253-1283 1866
  7. Deshpande, V.S. and Fleck, N.A. (2001), 'Multi-axial yield behaviour of polymer foams', Acta Mater., 49, 1859-1866 https://doi.org/10.1016/S1359-6454(01)00058-1
  8. Documentation (2003), MSC.Marc Volume D, MSC.Software Corporation
  9. Flugge, W. (1962), Handbook of Engineering Mechanics, McGraw-Hill Book Company, New York
  10. Gibson, L.J. and Ashby, M.F. (1997), Cellular Solids, Cambridge University Press, Cambridge
  11. Gioux, G., McCorrnack, T.M. and Gibson, L.J. (2000), 'Failure of aluminium foams under multiaxial loads', Int. J. of Mech. Sci., 42,1097-1117 https://doi.org/10.1016/S0020-7403(99)00043-0
  12. Gong, L. and Kyriakides, S. (2005), 'Compressive response of open-cell foams. Part II : Initiation and evolution of crushing', Int. J Solids Struct., 42, 1381-1399 https://doi.org/10.1016/j.ijsolstr.2004.07.024
  13. Gong, L., Kyriakides, S. and Jang, W.Y. (2005), 'Compressive response of open-cell foams. Part I : Morphology and elastic properties', Int. J. Solids Struct., 42 1355-1379 https://doi.org/10.1016/j.ijsolstr.2004.07.023
  14. Hartmann, M., Reindel, K. and Singer, R.F. (1998), 'Microstructure and mechanical properties of cellular magnesium matrix composites', Mater. Res. Soc. Symp. Proc., 521, 211-216
  15. Kiser, M., He, M.Y. and Zok, F.W. (1999), 'The mechanical response of ceramic microballoon reinforced aluminum matrix composites under compressive loading', Acta Mater., 47, 2685-2694 https://doi.org/10.1016/S1359-6454(99)00129-9
  16. Korner, C. and Singer, R.F. (2000), 'Processing of metal foams - Challenges and opportunities', Adv. Eng. Mater., 2, 159-165 https://doi.org/10.1002/(SICI)1527-2648(200004)2:4<159::AID-ADEM159>3.0.CO;2-O
  17. Lefebvre, D., Chebl, C., Thibodeau, L. and Khazzarie, E. (1983), 'A high-strain biaxial-testing rig for thinwalled tubes under axial load and pressure', Exp. Mech., 23, 384-392 https://doi.org/10.1007/BF02330053
  18. Mahrenholtz, O. and Ismar, H. (1979), 'Ein Modell des elastisch-plastischen Dbergangsverhaltens metallischer Werkstotfe', Abh. Braunschweig Wiss. Gesell., 30, 138-144
  19. Mahrenholtz, O. and Ismar, H. (1981), 'Zum elastisch-plastischen Ubergangsverhalten metallischer Werkstotfe', Ing-Archiv, 50, 217-224 https://doi.org/10.1007/BF00538229
  20. Mohr, D. and Doyogo, M. (2003), 'A new method for the biaxial testing of cellular solids', Exp. Mech., 43, 173-182 https://doi.org/10.1007/BF02410498
  21. Ochsner, A. and Lamprecht, K. (2003), 'On the uniaxial compression behavior or regular shaped cellular solids', Mech. Res. Commun., 30, 573-579 https://doi.org/10.1016/S0093-6413(03)00058-2
  22. Ochsner, A., Winter, W. and Kuhn, G. (2003a), 'On an elastic-plastic transition zone in cellular metals', Arch. Appl. Mech., 73, 261-269 https://doi.org/10.1007/s00419-003-0287-4
  23. Ochsner, A., Winter, Wand Kuhn, G. (2003b), 'FE-Simulation of the elastic-plastic transition zone of cellular metals under complex loading conditions', Proc. of the 15th Int. Conf. of Computer Methods in Mechanics CMM-2003, Poland, June
  24. Ochsner, A., Kuhn, G. and Gnicio, J. (2005), 'Investigation of cellular solids under biaxial stress states', Exp. Mech., 45, 325-330 https://doi.org/10.1007/BF02428162
  25. Papka, S.D. and Kyriakides, S. (1994), 'In-plane compressive response and crushing of honeycomb', J. Mech. Phys. Solids, 42, 1499-1532 https://doi.org/10.1016/0022-5096(94)90085-X
  26. Papka, S.D. and Kyriakides, S. (1998), 'In-plane crushing of a polycarbonate honeycomb', Int. J. Solids Struct., 35, 239-267 https://doi.org/10.1016/S0020-7683(97)00062-0
  27. Rauch, E.F. (1998), 'Plastic anisotropy of sheet metals determined by simple shear tests', Mat. Sci. Eng. A, 241, 179-183 https://doi.org/10.1016/S0921-5093(97)00486-3

Cited by

  1. Experimental Techniques for the Investigation of the Elasto-Plastic Transition Zone of Foamed Materials vol.8, pp.9, 2006, https://doi.org/10.1002/adem.200600073
  2. Microstructure and Properties of Porous High-N Ni-Free Austenitic Stainless Steel Fabricated by Powder Metallurgical Route vol.11, pp.7, 2018, https://doi.org/10.3390/ma11071058