Browse > Article
http://dx.doi.org/10.12989/sem.2006.22.1.017

The uniaxial strain test - a simple method for the characterization of porous materials  

Fiedler, T. (Centre for Mechanical Technology and Automation, University of Aveiro)
Ochsner, A. (Centre for Mechanical Technology and Automation, University of Aveiro)
Gracio, J. (Department of Mechanical Engineering, University of Aveiro)
Publication Information
Structural Engineering and Mechanics / v.22, no.1, 2006 , pp. 17-32 More about this Journal
Abstract
The application of cellular materials in load-carrying and security-relevant structures requires the exact prediction of their mechanical behavior, which necessitates the development of robust simulation models and techniques based on appropriate experimental procedures. The determination of the yield surface requires experiments under multi-axial stress states because the yield behavior is sensitive to the hydrostatic stress and simple uniaxial tests aim only to determine one single point of the yield surface. Therefore, an experimental technique based on a uniaxial strain test for the description of the influence of the hydrostatic stress on the yield condition in the elastic-plastic transition zone at small strains is proposed and numerically investigated. Furthermore, this experimental technique enables the determination of a second elastic constant, e.g., Poisson's ratio.
Keywords
multi-axial testing; cellular solids; plasticity; yield surface; nonlinear behavior;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Kiser, M., He, M.Y. and Zok, F.W. (1999), 'The mechanical response of ceramic microballoon reinforced aluminum matrix composites under compressive loading', Acta Mater., 47, 2685-2694   DOI   ScienceOn
2 Korner, C. and Singer, R.F. (2000), 'Processing of metal foams - Challenges and opportunities', Adv. Eng. Mater., 2, 159-165   DOI
3 Lefebvre, D., Chebl, C., Thibodeau, L. and Khazzarie, E. (1983), 'A high-strain biaxial-testing rig for thinwalled tubes under axial load and pressure', Exp. Mech., 23, 384-392   DOI
4 Mahrenholtz, O. and Ismar, H. (1979), 'Ein Modell des elastisch-plastischen Dbergangsverhaltens metallischer Werkstotfe', Abh. Braunschweig Wiss. Gesell., 30, 138-144
5 Mohr, D. and Doyogo, M. (2003), 'A new method for the biaxial testing of cellular solids', Exp. Mech., 43, 173-182   DOI
6 Ochsner, A., Winter, W. and Kuhn, G. (2003a), 'On an elastic-plastic transition zone in cellular metals', Arch. Appl. Mech., 73, 261-269   DOI
7 Ochsner, A., Winter, Wand Kuhn, G. (2003b), 'FE-Simulation of the elastic-plastic transition zone of cellular metals under complex loading conditions', Proc. of the 15th Int. Conf. of Computer Methods in Mechanics CMM-2003, Poland, June
8 Papka, S.D. and Kyriakides, S. (1994), 'In-plane compressive response and crushing of honeycomb', J. Mech. Phys. Solids, 42, 1499-1532   DOI   ScienceOn
9 Rauch, E.F. (1998), 'Plastic anisotropy of sheet metals determined by simple shear tests', Mat. Sci. Eng. A, 241, 179-183   DOI   ScienceOn
10 Gong, L., Kyriakides, S. and Jang, W.Y. (2005), 'Compressive response of open-cell foams. Part I : Morphology and elastic properties', Int. J. Solids Struct., 42 1355-1379   DOI   ScienceOn
11 Mahrenholtz, O. and Ismar, H. (1981), 'Zum elastisch-plastischen Ubergangsverhalten metallischer Werkstotfe', Ing-Archiv, 50, 217-224   DOI
12 Deshpande, V.S. and Fleck, N.A. (2000), 'Isotropic constitutive models for metallic foams', J. Mech. Phys. Solids, 48, 1253-1283   DOI   ScienceOn
13 Papka, S.D. and Kyriakides, S. (1998), 'In-plane crushing of a polycarbonate honeycomb', Int. J. Solids Struct., 35, 239-267   DOI   ScienceOn
14 Deshpande, V.S. and Fleck, N.A. (2001), 'Isotropic constitutive models for metallic foams', J. Mech. Phys. Solids, 48, 1253-1283 1866
15 Ochsner, A., Kuhn, G. and Gnicio, J. (2005), 'Investigation of cellular solids under biaxial stress states', Exp. Mech., 45, 325-330   DOI
16 Chen, W.F. and Hahn, D.J. (1988), Plasticity for Structural Engineers, Springer Verlag, New York
17 Ochsner, A. and Lamprecht, K. (2003), 'On the uniaxial compression behavior or regular shaped cellular solids', Mech. Res. Commun., 30, 573-579   DOI   ScienceOn
18 Ashby, M.F., Evans, A., Fleck, N.A, Gibson, L.J., Hutchinson, J.W. and Wadley, H.N.G. (2000), Metal Foams: A Design Guide, Butterworh-Heinemann, Boston
19 Balch, D.K. and Dunand, D.C. (2002), Processing and Properties of Lightweight Cellular Metals and Structures, TMS, Warrendale
20 Chengfeng, Y., Weimin, L., Yunxia, C. and Laigui, Y. (2001), 'Room-temperature ionic liquids: A novel versatile lubricant', Chem. Commun., 21, 2244-2245
21 Deshpande, V.S. and Fleck, N.A. (2001), 'Multi-axial yield behaviour of polymer foams', Acta Mater., 49, 1859-1866   DOI   ScienceOn
22 Documentation (2003), MSC.Marc Volume D, MSC.Software Corporation
23 Flugge, W. (1962), Handbook of Engineering Mechanics, McGraw-Hill Book Company, New York
24 Gibson, L.J. and Ashby, M.F. (1997), Cellular Solids, Cambridge University Press, Cambridge
25 Gioux, G., McCorrnack, T.M. and Gibson, L.J. (2000), 'Failure of aluminium foams under multiaxial loads', Int. J. of Mech. Sci., 42,1097-1117   DOI   ScienceOn
26 Gong, L. and Kyriakides, S. (2005), 'Compressive response of open-cell foams. Part II : Initiation and evolution of crushing', Int. J Solids Struct., 42, 1381-1399   DOI   ScienceOn
27 Hartmann, M., Reindel, K. and Singer, R.F. (1998), 'Microstructure and mechanical properties of cellular magnesium matrix composites', Mater. Res. Soc. Symp. Proc., 521, 211-216