• Title/Summary/Keyword: eigenvector

Search Result 343, Processing Time 0.03 seconds

Model Analysis of R/C Framed Structures to Earthquake Excitations (지진하중을 받는 철근콘크리트 골조 구조물의 모드 해석)

  • 장극관;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.180-189
    • /
    • 1994
  • An approximate method of normal coordinate idealization for use in nonlinear R /C frames has been developed. Normal coordinate apporaches have been used for nonlinear problems in the past, but they are not recerved wide acceptance because of the need for eigenvector computation in each time step. The proposed method circumvents the eigenvector recalculation problem by evaluating a limited number of sets of mode shapes in performing the dynamic analysis. Then some of the predetermined sets of eigenvectors are used in the nonlinear dynamic repeatedly. The method is applied to frame structures with ductile R /C elements. The plastic hinge zones are modeled with hysteres~s loops which evince degrading stiffness and pinching effects. Effxiencies and accuracies of the method for this application are presented.

Gradient On-Off Beamforming Algorithm Based On Eigen-Space Method For a Smart Antenna In IS-2000 1X Signal Environment (IS-2000 1X 신호 환경하에서의 고유공간 방법에 근간한 그래디언트 온-오프 빔평성 알고리즘)

  • 이정자;이원철;최승원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10C
    • /
    • pp.949-957
    • /
    • 2003
  • This paper presents a gradient ON-OFF algorithm of which the performance is very robust even when the angle spread increases in the mobile communication environments. The proposed method getting the diversity gain by utilizing the primary and secondary eigenvector, which corresponds to the largest and the second largest eigenvalue of the autocovariance matrix of the received signal vector, outperforms the method which just utilizes one eigenvector. By applying the proposed method to IS-2000 1X signal environments, it is observed that the proposed method shows excellent performance compared to a typical beamforming method using just one eigenvector, which considerably degrades the receiving performance as the angle spread increases.

Feedback Semi-Definite Relaxation for near-Maximum Likelihood Detection in MIMO Systems (MIMO 시스템에서 최적 검출 기법을 위한 궤환 Semi-Definite Relaxation 검출기)

  • Park, Su-Bin;Lee, Dong-Jin;Byun, Youn-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12C
    • /
    • pp.1082-1087
    • /
    • 2008
  • Maximum Likelihood (ML) detection is well known to exhibit better bit-error-rate (BER) than many other detectors for multiple-input multiple-output (MIMO) channel. However, ML detection has been shown a difficult problem due to its NP-hard problem. It means that there is no known algorithm which can find the optimal solution in polynomial-time. In this paper, Semi-Definite relaxation (SDR) is iteratively applied to ML detection problem. The probability distribution can be obtained by survival eigenvector out of the dominant eigenvalue term of the optimal solution. The probability distribution which is yielded by SDR is recurred to the received signal. Our approach can reach to nearly ML performance.

Experimental damage evaluation of prototype infill wall based on forced vibration test

  • Onat, Onur
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.77-90
    • /
    • 2019
  • This paper aims to investigate vibration frequency decrease (vibration period elongation) of reinforced concrete (RC) structure with unreinforced infill wall and reinforced infill wall exposed to progressively increased artificial earthquake load on shaking table. For this purpose, two shaking table experiments were selected as a case study. Shaking table experiments were carried on 1:1 scaled prototype one bay one storey RC structure with infill walls. The purpose of this shaking table experiment sequence is to assess local behavior and progressive collapse mechanism. Frequency decrease and eigen-vector evolution are directly related to in-plane and out-of-plane bearing capacities of infill wall enclosure with reinforced concrete frame. Firstly, frequency decrease-damage relationship was evaluated on the base of experiment results. Then, frequency decrease and stiffness degradation were evaluated with applied Peak Ground Acceleration (PGA) by considering strength deterioration. Lastly, eigenvector evolution-local damage and eigenvector evolution-frequency decrease relationship was investigated. Five modes were considered while evaluating damage and frequency decrease of the tested specimens. The relationship between frequency decrease, stiffness degradation and damage level were presented while comparing with Unreinforced Brick Infill (URB) and Reinforced Infill wall with Bed Joint Reinforcement (BJR) on the base of natural vibration frequency.

The Security Problem Analysis for Reversibility of Transformed Biometric Information Data on Eigenvector-based face Authentication (특성 벡터를 이용한 얼굴 인증 시스템에서 변환된 생체 정보 데이터의 가역성에 대한 보안 문제 분석)

  • Kim, Koon-Soon;Kang, Jeon-Il;Nyang, Dae-Hun;Lee, Kyung-Hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.3
    • /
    • pp.51-59
    • /
    • 2008
  • The biometrics has been researched as a means for authenticating user's identity. Among the biometrics schemes for face recognition, the eigenvector-based schemes, which use eigenvector made from training data for transforming test data to abstracted data, are widely adopted. From those schemes, however, it is hard to expect cancelable feature, which is a general concept for security in the biometrics. In this paper, we point out the security problem that is the recovery of valuable face information from the abstracted face data and consider a possible attack scenario by showing our experiment results.

Performance Analysis of the Anti-Spoofing Array Antenna with Eigenvector Nulling Algorithm

  • Lee, Kihoon;Song, Min Kyu;Lee, Jang Yong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.181-189
    • /
    • 2022
  • The public open signals from Global Navigation Satellite System (GNSS) including Global positioning system (GPS) are used widely by many peoples in the world except for the public regulated restriction signals which are encrypted. Nowadays there are growing concerns about GNSS signal spoofing which can deceive the GNSS receivers by abusing these open services. To counter these spoofing threats, many researches have been studied including array antenna techniques which can detect the direction of arrival by means of Multiple Signal Classification (MUSIC) algorithm. Originally the array antenna techniques were developed to countermeasure the jamming signal in electronic warfare by using the nulling or beamforming algorithm toward a certain direction. In this paper, we study the anti-spoofing techniques using array antenna to overcome the jamming and spoofing issues simultaneously. First, we will present the theoretical analysis results of spoofing signal response of Minimum Variance Distortionless Response (MVDR) algorithm in array antenna. Then the eigenvector algorithm of covariance matrix is suggested and verified to work with the existing anti-jamming method. The modeling and simulation are used to verify the effectiveness of the anti-spoofing algorithm. Also, the field test results show that the array antenna system with the proposed algorithms can perform the anti-spoofing function. This anti-spoofing method using array antenna is very effective in the view point of solving both the jamming and spoofing problems using the same array antenna hardware.

An Analysis of Eigenvalues and Eigenvectors for V-notched Cracks in Pseudo-isotropic Dissimilar Materials

  • Kim, Jin-kwang;Cho, Sang-Bong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.33-44
    • /
    • 2002
  • The problem of eigenvalues and eigenvectors is obtained from a v-notched crack in pseudo-isotropic dissimilar materials by the traction free boundary and the perfect bonded conditions at interface. The complex stress function of the two-term William's type is used. The eigenvalues are solved by a commercial numerical program, MATHEMATICA. Stress singularities for v-notched cracks in pseudo-isotropic dissimilar materials are discussed. The RWCIM(Reciprocal Work Contour Integral Method) is applied to the determination of eigenvector coefficients associated with eigenvalues with egenvalues. The RWCIM algorithm is also coded by the MATHEMATICA.

Improved Sensitivity Method for Natural Frequency and Mode Shape of Damped Systems (감쇠 시스템의 고유진동수와 모드의 개선된 만감도 기법)

  • 조홍기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.176-183
    • /
    • 2000
  • A simplified for the eigenpair sensitivities of damped systems is presented. This approach employs a reduced equation to determine the sensitivities of eigenpairs of the damped vibratory systems with distinct eigenvalues. The derivatives of eigenpairs are obtained by solving an algebraic equation with a symmetric coefficient matrix of (n+1) b (n+1) dimension where n is the number of degree of freedom. This is an improved method of the previous work of Lee and Jung. Two equations are used to find eigenvalues derivatives and eigenvector derivatives in their paper. A significant advantage of this approach over Lee and Jung is that one algebraic equation newly developed is enough to compute such eigenvalue derivatives and eigenvector derivatives. Simulation results indicate that the new method is highly efficient in determining the sensitivities of engenpairs of the damped vibratory systems with distrinct eigenvalues.

  • PDF

Layout of simulator for measuring and evaluating human sensibility (감성 측정평가 시뮬레이터의 설비 배치)

  • Kim, Chae-Bok;Park, Se-Jin;Kim, Cheol-Jung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.121-132
    • /
    • 1999
  • This paper investigates the methodology to develop a layout of the simulator for measuring and evaluating human sensibility. Since the simulator layout is different from general building layouts in that it is organized in order to communicate systematically between facilities, laboratories to evaluate human sensibility and equipments to support experiments in simulator, two approaches based on eigenvector and cut tree are applied to develop a simulator layout. Qualitative input data (relationship chart. space requirements for each laboratory and equipment) are obtained and transformed into quantitative data. The information obtained by two approaches provides several meaningful clues to generate the simulator layout. The simulator layout is presented based on the obtained information by two approaches. Extracted quantitative data by using eigenvector and cut tree are meaningful of generating the simulator layout.

  • PDF

A Novel Eigenstructure Assignment for Linear Systems with Probabilistic Uncertainties

  • Seo, Y.B.;Choi, J.W.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.7-12
    • /
    • 2003
  • In this paper, S(stochastic)-eigenvalue concept and its S-eigenvector for linear continuous-time systems with probabilistic uncertainties are proposed. The proposed concept is concerned with the perturbation of eigenvalues due to the probabilistic variable parameters in the dynamic model of a plant. S-eigenstructure assignment scheme via the Sylvester equation approach based on the S-eigenvalue concept is also proposed. The proposed design scheme is applied to the longitudinal dynamics of open-loop-unstable aircraft with possible uncertainties in aerodynamic and thrust effects as well as separate dynamic pressure.

  • PDF