• Title/Summary/Keyword: eigenvalue problem.

Search Result 550, Processing Time 0.023 seconds

Exact solutions of vibration and postbuckling response of curved beam rested on nonlinear viscoelastic foundations

  • Nazira Mohamed;Salwa A. Mohamed;Mohamed A. Eltaher
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.1
    • /
    • pp.55-81
    • /
    • 2024
  • This paper presents the exact solutions and closed forms for of nonlinear stability and vibration behaviors of straight and curved beams with nonlinear viscoelastic boundary conditions, for the first time. The mathematical formulations of the beam are expressed based on Euler-Bernoulli beam theory with the von Karman nonlinearity to include the mid-plane stretching. The classical boundary conditions are replaced by nonlinear viscoelastic boundary conditions on both sides, that are presented by three elements (i.e., linear spring, nonlinear spring, and nonlinear damper). The nonlinear integro-differential equation of buckling problem subjected to nonlinear nonhomogeneous boundary conditions is derived and exactly solved to compute nonlinear static response and critical buckling load. The vibration problem is converted to nonlinear eigenvalue problem and solved analytically to calculate the natural frequencies and to predict the corresponding mode shapes. Parametric studies are carried out to depict the effects of nonlinear boundary conditions and amplitude of initial curvature on nonlinear static response and vibration behaviors of curved beam. Numerical results show that the nonlinear boundary conditions have significant effects on the critical buckling load, nonlinear buckling response and natural frequencies of the curved beam. The proposed model can be exploited in analysis of macrosystem (airfoil, flappers and wings) and microsystem (MEMS, nanosensor and nanoactuators).

A Design Methodology for CNN-based Associative Memories (연상 메모리 기능을 수행하는 셀룰라 신경망의 설계 방법론)

  • Park, Yon-Mook;Kim, Hye-Yeon;Park, Joo-Young;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.5
    • /
    • pp.463-472
    • /
    • 2000
  • In this paper, we consider the problem of realizing associative memories via cellular neural network(CNN). After introducing qualitative properties of the CNN model, we formulate the synthesis of CNN that can store given binary vectors with optimal performance as a constrained optimization problem. Next, we observe that this problem's constraints can be transformed into simple inequalities involving linear matrix inequalities(LMIs). Finally, we reformulate the synthesis problem as a generalized eigenvalue problem(GEVP), which can be efficiently solved by recently developed interior point methods. Proposed method can be applied to both space varying template CNNs and space-invariant template CNNs. The validity of the proposed approach is illustrated by design examples.

  • PDF

Wing Optimization based on a Reduced System (축소시스템 기반 비행체 날개 최적화 연구)

  • Kim, Hyun-Gi;Choi, In-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4411-4417
    • /
    • 2012
  • The present study proposes the optimization of wing structure base on reduced model which assures the solution accuracy and computational efficiency. Well-constructed reduced model assures the accurate result in the eigenvalue problem, dynamic analysis or sensitivity of design optimization. Reduced system is classified into the reduce-order model based on structural modes and the reduced system based on degrees of freedom. Because this study uses the reduced system based on degrees of freedom, it is important to select the dominant degrees of freedom properly. For this work, robust selection method, two-level selection scheme, is employed and IRS(Improved Reduced System) is applied to construct the final reduced system. In the optimization process based on the reduced system, all of the equivalent stress, eigenvalue and design sensitivities are calculated from the reduced system. Through a numerical example, it is shown that the present optimization methodology based on the reduction method can provide an optimal results for objective function satisfying constraint condition.

Characteristic equation solution of nonuniform soil deposit: An energy-based mode perturbation method

  • Pan, Danguang;Lu, Wenyan;Chen, Qingjun;Lu, Pan
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.463-472
    • /
    • 2019
  • The mode perturbation method (MPM) is suitable and efficient for solving the eigenvalue problem of a nonuniform soil deposit whose property varies with depth. However, results of the MPM do not always converge to the exact solution, when the variation of soil deposit property is discontinuous. This discontinuity is typical because soil is usually made up of sedimentary layers of different geologic materials. Based on the energy integral of the variational principle, a new mode perturbation method, the energy-based mode perturbation method (EMPM), is proposed to address the convergence of the perturbation solution on the natural frequencies and the corresponding mode shapes and is able to find solution whether the soil properties are continuous or not. First, the variational principle is used to transform the variable coefficient differential equation into an equivalent energy integral equation. Then, the natural mode shapes of the uniform shear beam with same height and boundary conditions are used as Ritz function. The EMPM transforms the energy integral equation into a set of nonlinear algebraic equations which significantly simplifies the eigenvalue solution of the soil layer with variable properties. Finally, the accuracy and convergence of this new method are illustrated with two case study examples. Numerical results show that the EMPM is more accurate and convergent than the MPM. As for the mode shapes of the uniform shear beam included in the EMPM, the additional 8 modes of vibration are sufficient in engineering applications.

Efficient User Selection Algorithms for Multiuser MIMO Systems with Zero-Forcing Dirty Paper Coding

  • Wang, Youxiang;Hur, Soo-Jung;Park, Yong-Wan;Choi, Jeong-Hee
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.232-239
    • /
    • 2011
  • This paper investigates the user selection problem of successive zero-forcing precoded multiuser multiple-input multiple-output (MU-MIMO) downlink systems, in which the base station and mobile receivers are equipped with multiple antennas. Assuming full knowledge of the channel state information at the transmitter, dirty paper coding (DPC) is an optimal precoding strategy, but practical implementation is difficult because of its excessive complexity. As a suboptimal DPC solution, successive zero-forcing DPC (SZF-DPC) was recently proposed; it employs partial interference cancellation at the transmitter with dirty paper encoding. Because of a dimensionality constraint, the base station may select a subset of users to serve in order to maximize the total throughput. The exhaustive search algorithm is optimal; however, its computational complexity is prohibitive. In this paper, we develop two low-complexity user scheduling algorithms to maximize the sum rate capacity of MU-MIMO systems with SZF-DPC. Both algorithms add one user at a time. The first algorithm selects the user with the maximum product of the maximum column norm and maximum eigenvalue. The second algorithm selects the user with the maximum product of the minimum column norm and minimum eigenvalue. Simulation results demonstrate that the second algorithm achieves a performance similar to that of a previously proposed capacity-based selection algorithm at a high signal-to-noise (SNR), and the first algorithm achieves performance very similar to that of a capacity-based algorithm at a low SNR, but both do so with much lower complexity.

Complex modes in damped sandwich beams using beam and elasticity theories

  • Ahmad, Naveed;Kapania, Rakesh K.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.57-76
    • /
    • 2015
  • We investigated complex damped modes in beams in the presence of a viscoelastic layer sandwiched between two elastic layers. The problem was solved using two approaches, (1) Rayleigh beam theory and analyzed using the Ritz method, and (2) by using 2D plane stress elasticity based finite-element method. The damping in the layers was modeled using the complex modulus. Simply-supported, cantilever, and viscously supported boundary conditions were considered in this study. Simple trigonometric functions were used as admissible functions in the Ritz method. The key idea behind sandwich structure is to increase damping in a beam as affected by the presence of a highly-damped core layer vibrating mainly in shear. Different assumptions are utilized in the literature, to model shear deformation in the core layer. In this manuscript, we used FEM without any kinematic assumptions for the transverse shear in both the core and elastic layers. Moreover, numerical examples were studied, where the base and constraining layers were also damped. The loss factor was calculated by modal strain energy method, and by solving a complex eigenvalue problem. The efficiency of the modal strain energy method was tested for different loss factors in the core layer. Complex mode shapes of the beam were also examined in the study, and a comparison was made between viscoelastically and viscously damped structures. The numerical results were compared with those available in the literature, and the results were found to be satisfactory.

The transient and frequency response analysis using the multi-level system condensation in the large-scaled structural dynamic problem

  • Baek, Sungmin;Cho, Maenghyo
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.429-441
    • /
    • 2011
  • In large-scale problem, a huge size of computational resources is needed for a reliable solution which represents the detailed description of dynamic behavior. Recently, eigenvalue reduction schemes have been considered as important technique to resolve computational resource problems. In addition, the efforts to advance an efficiency of reduction scheme leads to the development of the multi-level system condensation (MLSC) which is initially based on the two-level condensation scheme (TLCS). This scheme was proposed for approximating the lower eigenmodes which represent the global behavior of the structures through the element-level energy estimation. The MLSC combines the multi-level sub-structuring scheme with the previous TLCS for enhancement of efficiency which is related to computer memory and computing time. The present study focuses on the implementation of the MLSC on the direct time response analysis and the frequency response analysis of structural dynamic problems. For the transient time response analysis, the MLSC is combined with the Newmark's time integration scheme. Numerical examples demonstrate the efficiency of the proposed method.

Free vibration analysis of cracked thin plates using generalized differential quadrature element method

  • Shahverdi, Hossein;Navardi, Mohammad M.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.345-355
    • /
    • 2017
  • The aim of the present study is to develop an elemental approach based on the differential quadrature method for free vibration analysis of cracked thin plate structures. For this purpose, the equations of motion are established using the classical plate theory. The well-known Generalized Differential Quadrature Method (GDQM) is utilized to discretize the governing equations on each computational subdomain or element. In this method, the differential terms of a quantity field at a specific computational point should be expressed in a series form of the related quantity at all other sampling points along the domain. However, the existence of any geometric discontinuity, such as a crack, in a computational domain causes some problems in the calculation of differential terms. In order to resolve this problem, the multi-block or elemental strategy is implemented to divide such geometry into several subdomains. By constructing the appropriate continuity conditions at each interface between adjacent elements and a crack tip, the whole discretized governing equations of the structure can be established. Therefore, the free vibration analysis of a cracked thin plate will be provided via the achieved eigenvalue problem. The obtained results show a good agreement in comparison with those found by finite element method.

Flutter characteristics of axially functional graded composite wing system

  • Prabhu, L.;Srinivas, J.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.4
    • /
    • pp.353-369
    • /
    • 2020
  • This paper presents the flutter analysis and optimum design of axially functionally graded box beam cantilever wing section by considering various geometric and material parameters. The coupled dynamic equations of the continuous model of wing system in terms of material and cross-sectional properties are formulated based on extended Hamilton's principle. By expressing the lift and pitching moment in terms of plunge and pitch displacements, the resultant two continuous equations are simplified using Galerkin's reduced order model. The flutter velocity is predicted from the solution of resultant damped eigenvalue problem. Parametric studies are conducted to know the effects of geometric factors such as taper ratio, thickness, sweep angle as well as material volume fractions and functional grading index on the flutter velocity. A generalized surrogate model is constructed by training the radial basis function network with the parametric data. The optimized material and geometric parameters of the section are predicted by solving the constrained optimal problem using firefly metaheuristics algorithm that employs the developed surrogate model for the function evaluations. The trapezoidal hollow box beam section design with axial functional grading concept is illustrated with combination of aluminium alloy and aluminium with silicon carbide particulates. A good improvement in flutter velocity is noticed by the optimization.

Stabilizing Solutions of Algebraic Matrix riccati Equations in TEX>$H_\infty$ Control Problems

  • Kano, Hiroyuki;Nishimura, Toshimitsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.364-368
    • /
    • 1994
  • Algebraic matrix Riccati equations of the form, FP+PF$^{T}$ -PRP+Q=0. are analyzed with reference to the stability of closed-loop system F-PR. Here F, R and Q are n * n real matrices with R=R$^{T}$ and Q=Q$^{T}$ .geq.0 (nonnegative-definite). Such equations have been playing key roles in optimal control and filtering problems with R .geq. 0. and also in the solutions of in H$_{\infty}$ control problems with R taking the form R=H$_{1}$$^{T}$ H$_{1}$-H$_{2}$$^{T}$ H$_{2}$. In both cases an existence of stabilizing solution, i.e. the solution yielding asymptotically stable closed-loop system, is an important problem. First, we briefly review the typical results when R is of definite form, namely either R .geq. 0 as in LQG problems or R .leq. 0. They constitute two extrence cases of Riccati to the cases H$_{2}$=0 and H$_{1}$=0. Necessary and sufficient conditions are shown for the existence of nonnegative-definite or positive-definite stabilizing solution. Secondly, we focus our attention on more general case where R is only assumed to be symmetric, which obviously includes the case for H$_{\infty}$ control problems. Here, necessary conditions are established for the existence of nonnegative-definite or positive-definite stabilizing solutions. The results are established by employing consistently the so-called algebraic method based on an eigenvalue problem of a Hamiltonian matrix.x.ix.x.

  • PDF