• Title/Summary/Keyword: eigenvalue analysis

Search Result 791, Processing Time 0.031 seconds

The Eigenvalue Sensitivity Analysis in Multimachine Power Systems (다기계통의 고유치감도해석에 관한 연구)

  • 권세혁;노규민;김덕영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.372-380
    • /
    • 1994
  • A systematic procedure for the elements of system state matrix in multimachine systems with loads and eigenvalue technique which utilize stage matrix have widespread application in the analysis of small signal stability. Synchronous machines are represented by either a two-axis model or classical model. The interrelationship of submatrices of system matrix is investigated. Once elements of one submatrix are determined, they can be used to calculate the elements of the other submatrix. The approach is useful in the eigenvalue sensitivity analysis for various initial conditions and for the adjustment of generator controller parameters. It is illustrated for a three-machine and nine-bus multimachine system(WSCC system) with constant impedance loads.

A Study of the Squeal Noise of a Disc Brake System Using FEM (유한 요소법을 이용한 디스크 브레이크 스퀼 소음 해석)

  • Choi, Hyoung-Gil;Jeong, Ji-Deok;Kang, Ho-Won;Lee, Jang-Moo;Chung, In-Seung;Park, Choon-Ki
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.630-634
    • /
    • 2001
  • Predicting brake squeal noise in design stage can be beneficial to reducing the expense of development. In this paper, the possibility of pre-estimating squeal phenomena of a disc brake system was investigated. To preestimate squeal phenomena, complex eigenvalue analysis was performed for brake system. The evaluation of noise dynamometer test verified the prediction and it corresponded with the result of complex eigenvalue analysis.

  • PDF

A New Approach to HVDC System Control for Damping SSO Using the Novel Eigenvalue Analysis Program

  • Kim, Dong-Joon;Nam, Hae-Kon;Moon, Young-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.178-191
    • /
    • 2004
  • This paper presents a new approach to HVDC system control for damping subsynchronous oscillation (SSO) involving HVDC converters and turbine generator shaft systems. This requires a novel eigenvalue analysis (NEA) program, derivation of HVDC system modeling considering steady-state conditions and dynamic conditions in the combined AC/DC system, and an appropriate control scheme. The method suggested makes possible the design of a subsynchronous oscillation damping controller (SODC) to provide positive damping torque for the range of torsional modes in combined AC/DC systems. There are three steps involved in the design of a SODC; first the worst torsional mode is determined using the NEA program, next the SODC parameters are designed for the range of that torsional mode, and then finally an off-line simultaneous time domain program such as PSCAD/EMTDC is used to verify the parameters of the SODC. The suggested SODC design method is applied to two AC/DC systems, and its practicality is verified using the PSCAD/EMTDC simulation program.

Sensitivity Analysis of Oscillation Modes Occurred by Periodic Switching Operations of TCSC in Discrete Power Systems (이산 전력시스템에서 TCSC의 주기적 스위칭 동작에 의한 진동모드의 감도해석)

  • Kim, Deok-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.162-168
    • /
    • 2008
  • In this paper, the RCF(Resistive Companion Form) analysis method is applied to analyze small signal stability of power systems including thyristor controlled FACTS(Flexible AC Transmission System) equipments such as TCSC(Thyristor Controlled Series Capacitor). The eigenvalue sensitivity analysis algorithm in discrete systems based on the RCF analysis method is presented and applied to the power system including TCSC. As a result of simulation, the RCF analysis method is very useful to precisely calculate the variations of eigenvalues or newly generated unstable oscillation modes after periodic switching operations of TCSC. Also the eigenvalue sensitivity analysis method based on the RCF analysis method enabled to precisely calculate eigenvalue sensitivity coefficients of controller parameters about the dominant oscillation mode after periodic switching operations in discrete systems. These simulation results are different from those of the conventional continuous system analysis method such as the state space equation and showed that the RCF analysis method is very useful to analyze the discrete power systems including periodically operated switching equipments such as TCSC.

The study on the influence of contact pressure distribution on brake squeal analysis (브레이크 스퀼 해석에서 접촉압력분포의 영향에 관한 연구)

  • Lee, Ho-Gun;Son, Min-Hyuk;Seo, Young-Uk;Boo, Kwang-Seok;Kim, Heung-Seob
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1120-1124
    • /
    • 2007
  • Recently in the automotive brake industry brake squeal noise has become one of the top automotive quality warranty issues. The contact pressure is used to predict friction coupling in the brake squeal analysis. The formulation of friction coupling has performed by nonlinear static analysis prior to the complex eigenvalue analysis. This paper proposes a validation methodology of squeal analysis using modal testing and contact analysis and examines the effect of predicted contact pressure that leads to the discrepancy between unstable complex mode and squeal frequency. This studies compose a three step validation process : examining the modal characteristics of component and assembly loaded contact pressure using modal testing and FEM analysis and verifying the contact pressure distribution using nonlinear static analysis and experiment. Finally, the unstable modes from complex eigenvalue analysis and realistic squeal frequency from the noise dynamometer are investigated.

  • PDF

Efficient Local Vibration Analysis of Large Steel Frames (대형철골구조물의 효율적인 국부진동해석)

  • 이동근;송종걸;정길영;김우범
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.105-112
    • /
    • 1994
  • In a local vibration analysis of a large steel frame, a large eigenvalue problem results. Due to computer storage and the expense of a complete solution, it is desirable to minimize the size of the resulting matrices. A new and efficient method of local vibration analysis for large steel frames is presented. It reduces the order of dynamic matrices by dynamic condensation method. Examples are given for local vibration of a plane frame. Results are compared to the complete solution of the full eigenvalue problem.

  • PDF

THE FIRST EIGENVALUE ESTIMATE ON A COMPACT RIEMANNIAN MANIFOLD

  • Kim, Bang-Ok
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.229-238
    • /
    • 1993
  • Let M be an n-dimensional compact Riemannian manifold with boundary .part.M. We consider the Neumann eigenvalue problem on M of the equation (Fig.) where .upsilon. is the unit outward normal vector to the boundary .part.M. due to the importance of Poincare inequality for analysis on manifolds, one wishes to obtain the lower bound of the first non-zero eigenvalue .eta.$_{1}$ of (1.1). For the purpose of applications, it is important to relax the dependency of the lower bound on the geometric quantities. For general compact manifolds with convex boundary, Li-Yau [3] obtained the lower bound of .eta.$_{1}$. Recently, Roger Chen [1] investigated the lower bound of the first Neumann eigenvalue .eta.$_{1}$ on compact manifold M with nonconvex boundary. We investigate the lower bound .eta.$_{1}$ with the same conditions as those of Roger chen. But, using the different auxiliary function, we have the following theorem.

  • PDF

Mode Shape Variation of Disc Brake with Respect to Contact Stiffness Variation (마찰재 접촉강성에 따른 디스크 브레이크 진동모드 형상화)

  • Kang, Jae-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.127-132
    • /
    • 2010
  • Eigensolutions associated with self-excited vibration of disc brake system can be obtained by complex eigenvalue analysis. The eigenvalue sensitivity to change in contact stiffness can be used to demonstrate stability criteria and eigenvalue veering. Dynamic instability on eigenvalue loci with respect to the variation of contact stiffness is found to be related to mode interaction between two adjacent modes. This modal interaction can be effectively shown by mode shape visualization. This paper presents the methodology to construct the mode shape of disc brake system where a disc and two brake pads are coupled with contact stiffness.

Eigenvalue Perturbation of Augmented Matrix for Control Parameter (제어기 정수에 대한 확대행렬의 고유치 perturbation)

  • Shim, K.S.;Song, S.G.;Nam, H.K.;Kim, Y.G.;Moon, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.17-19
    • /
    • 2001
  • In this paper, eigenvalue perturbation theory and its applications for the augmented system matrix are described. This theory is quite useful in the cases where any change in a system parameter results in signifiant changes to most of the elements of the augmented matrix or where the forming of sensitivity matrix so complicate. And AMEP(augmented matrix eigenvalue perturbation) for the excitation system parameters are computed for analysis of small signal stability of KEPCO 215-machine 791-bus system.

  • PDF

Eigenvalue Sensitivity of Rigid Body Mode for Vehic1e Powertrain System (차량 파워트레인계의 강체고유진동수 민감도)

  • 원광민;강구태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.609-615
    • /
    • 2001
  • In this paper, the eigenvalue sensitivity of vehicle powertrain was investigated by analytic method. The powertrain system was considered as a rigid body with multiple engine mounts, and the engine mounts were supposed as three linear springs in three orthogonal directions. The design parameters for the sensitivity analysis were engine mount properties (positions, stiffness, and orientations) and powertrain properties (mass, second moment of inertia, and center of gravity). Firstly, an effective form of eigenvalue problem for the powertrain system was introduced. Then, the analytic sensitivity of eigenvalue was derived using the equation. Lastly, the derived sensitivity equation was applied to a real powertrain system to provide its correctness and applicability.

  • PDF