• Title/Summary/Keyword: eigenvalue analysis

Search Result 791, Processing Time 0.023 seconds

The Effect of the Mass Matrix in the Eigenvalue Analysis of Curved Beam Elements (곡선보 요소의 고유치 해석에서 질량행렬의 영향)

  • Yu, Ha-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.288-296
    • /
    • 1997
  • Curved beam elements with two nodes based on shallow beam geometry and strain interpolations are employed in eigenvalue analysis. In these elements, the displacement interpolation functions and mass matrices are consistent with strain fields. To assess the quality of the element mass matrix in free vibration problems, several numerical experiments are performed. In these analysis, both the inconsistent mass matrices using linear displacement interpolation function and the consistent mass matrices are used to show the difference. The numerical results demonstrate that the accuracy is closely related to the property of the mass matrix as well as that of the stiffness matrix and that the mass matrix consistent with strain fields is very beneficial to eigenvalue analysis. Also, it is proved that the strain based elements are very efficient in a wide range of element aspect ratios and curvature properties.

Application of the Chebyshev-Fourier Pseudo spectral Method to the Eigenvalue Analysis of Circular Mindlin Plates with Free Boundary Conditions

  • Lee, Jinhee
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1458-1465
    • /
    • 2003
  • An eigenvalue analysis of the circular Mindlin plates with free boundary conditions is presented. The analysis is based on the Chebyshev-Fourier pseudospectral method. Even though the eigenvalues of lower vibration modes tend to convergence more slowly than those of higher vibration modes, the eigenvalues converge for sufficiently fine pseudospectral grid resolutions. The eigenvalues of the axisymmetric modes are computed separately. Numerical results are provided for different grid resolutions and for different thickness-to-radius ratios.

Eigenvalue design sensivity analysis of structure using continuum method (연속법에 의한 판구조 고유진동수의 민감도 해석)

  • 이재환;장강석;신민용
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.3-9
    • /
    • 1997
  • In this paper, design sensivity of plate natural frequency is computed for thickness design variables. Once the variational equation is derived from Lagrange quation using the virtual displacement, governing energy bilinear form is obtained and sensivity equation is formulated through the first variation. Natural frequency is obtained using the commercial FEM code and the accuracy of sensivity is verified by finite difference. The accuracy of natural frequency and sensivity improves for the fine mesh model.

  • PDF

A Proposal of Simplified Eigenvalue Equation for an Analysis of Dielectric Slab Waveguide

  • Choi Young-Kyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.381-386
    • /
    • 2006
  • In dielectric waveguide analysis and synthesis, we often encounter an awkward task of solving the eigenvalue equation to find the value of propagation constant. Since the dispersion equation is an irrational equation, we cannot solve it directly. Taking advantage of approximated calculation, we attempt here to solve this irrational dispersion equation. A new type of eigenvalue equation, in which guide index is expressed as a function of frequency, has been developed. In practical optical waveguide designing and in calculating the propagation mode, this equation will be used more conveniently than the previous one. To expedite the design of the waveguide, we then solve the eigenvalue equation of a slab waveguide, which is sufficiently accurate for practical purpose.

Eigenvalue Perturbation for Controller Parameter and Small Signal Stability Analysis of Large Scale Power Systems (제어기정수에 대한 고유치 PERTURBATION과 대규모 전력계통의 미소신호안정도 해석)

  • Shim, Kwan-Shik;Song, Sung-Gun;Moon, Chae-Ju;Lee, Ki-Young;Nam, Hae-Kon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.11
    • /
    • pp.577-584
    • /
    • 2002
  • This paper presents a novel approach based on eigenvalue perturbation of augmented matrix(AMEP) to estimate the eigenvalue for variation of controller parameter. AMEP is a useful tool in the analysis and design of large scale power systems containing many different types of exciters, governors and stabilizers. Also, it can be used to find possible sources of instability and to determine the most sensitivity parameters for low frequency oscillation modes. This paper describes the application results of AMEP algorithm with respect to all controller parameter of KEPCO systems. Simulation results for interarea and local mode show that the proposed AMEP algorithm can be used for turning controller parameter, and verifying system data and linear model.

Analysis of the first order eigenvalue sensitivity affected by generator model (발전기 모델링 정도에 의한 고유치 감도계수에 미치는 영향해석)

  • Cho, Eon-Jung;Lee, Kun-Jae;Kim, Deok-Young
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.119-121
    • /
    • 2003
  • In small signal stability analysis of power systems, eigenvalue analysis is the most useful method and the detailed modeling of generator gives an important effect to the eigenvalues. Generator full model is used for precise dynamic analysis of generators and controllers while two-axis model is used for multimachine systems because of the reduced order of the state matrix. Also, the eigenvalue sensitivity coefficients are used for optimization of controller parameters to improve system stability. This paper compare the first order eigenvalue sensitivity coefficients of controllers in case of generator full model with those of two-axis model. As a result of an example the estimated eigenvalues using sensitivity coefficients in case of generator full model is very close to those of state matrix within 1% error ratios.

  • PDF

An Eigenvalue Sensitivity Analysis of the Iterative Eigenvalue Calculation Algorithm (반복계산에 의한 고유치 계산 알고리즘에서의 고유치 감도해석)

  • Kim, Deok-Young
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.217-219
    • /
    • 2001
  • This paper presents a new eigenvalue sensitivity analysis method based on AESOPS algorithm. The additional calculation steps are derived from the original AESOPS algorithm. The additional calculation steps are performed directly from the AESOPS algorithm after iteratively calculating electro-mechanical oscillation modes in small signal stability problems. Owing to the structural characteristics of partitioned sub-matrix of state space equations, the partial differentiation terms of system state matrix for obtaining eigenvalue sensitivity indices can be calculated very simply. By the method presented in this paper, the AESOPS algorithm can be used in controller design problem as well as analysis of small signal stability problem.

  • PDF

A Formulation of Iterative Eigenvalue Analysis Algorithm to the Second Order Newton Raphson Method (반복계산에 의한 고유치 해석 알고리즘의 2차 뉴튼랩슨법으로의 정식화)

  • Kim, Deok-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.3
    • /
    • pp.127-133
    • /
    • 2002
  • This paper presents an efficient improvement of the iterative eigenvalue calculation method of the AESOPS algorithm. The intuitively and heuristically approximated iterative eigenvalue calculation method of the AESOPS algorithm is transformed to the Second Order Newton Raphson Method which is generally used in numerical analysis. The equations of second order partial differentiation of external torque, terminal and internal voltages are derived from the original AESOPS algorithm. Therefore only a few calculation steps are added to transform the intuitively and heuristically approximated AESOPS algorithm to the Second Order Newton Raphson Method, while the merits of original algorithm are still preserved.

Numerical Analysis of Lightwave Modes in GRIN Optical Fibers by Using Eigenvalue (고유치를 이용한 GRIN 광섬유 내에서의 광파모드의 해석)

  • Sohn, Young-Ho
    • Convergence Security Journal
    • /
    • v.8 no.4
    • /
    • pp.153-159
    • /
    • 2008
  • Graded-Index Multimode Optical fibers have recently received a lot of attention as regards their application and lightwave behavior in relation to broadband communication links. Accordingly, this aticle presents a novel lightwave mode analysis that solves the wave equation using a numerical analysis based on an eigenvalue problem method, thereby avoiding the typical complicated Bessel function method. Angular depedences and number of modes were observed as well. Future research implications will be possibly noticed such areas as bending effects and mode coupling analyses thru this research.

  • PDF