• Title/Summary/Keyword: efficient energy system

Search Result 1,789, Processing Time 0.028 seconds

Development of Energy Management System for Micro-Grid with Photovoltaic and Battery system

  • Asghar, Furqan;Talha, Muhammad;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.299-305
    • /
    • 2015
  • Global environmental concerns and the ever increasing need of energy, coupled with steady progress in renewable energy technologies, are opening up new opportunities for utilization of renewable energy resources. Distributed electricity generation is a suitable option for sustainable development thanks to the load management benefits and the opportunity to provide electricity to remote areas. Solar energy being easy to harness, non-polluting and never ending is one of the best renewable energy sources for electricity generation in present and future time. Due to the random and intermittent nature of solar source, PV plants require the adoption of an energy storage and management system to compensate fluctuations and to meet the energy demand during night hours. This paper presents an efficient, economic and technical model for the design of a MPPT based grid connected PV with battery storage and management system. This system satisfies the energy demand through the PV based battery energy storage system. The aim is to present PV-BES system design and management strategy to maximize the system performance and economic profitability. PV-BES (photovoltaic based battery energy storage) system is operated in different modes to verify the system feasibility. In case of excess energy (mode 1), Li-ion batteries are charged using CC-CV mechanism effectively controlled by fuzzy logic based PID control system whereas during the time of insufficient power from PV system (mode 2), batteries are used as backup to compensate the power shortage at load and likewise other modes for different scenarios. This operational mode change in PV-BES system is implemented by State flow chart technique based on SOC, DC bus voltages and solar Irradiance. Performance of the proposed PV-BES system is verified by some simulations study. Simulation results showed that proposed system can overcome the disturbance of external environmental changes, and controls the energy flow in efficient and economical way.

A Study on the Energy Efficiency Improvement according to Operation Condition of Solar Thermal System in Office Buildings (사무소 건물의 태양열 시스템 운영조건 변화에 따른 에너지 효율 향상에 관한)

  • Jung, Young-Ju;Kim, Seok-Hyun;Lee, Yong-Ho;Hwang, Jung-Ha;Cho, Young-Hum
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.109-115
    • /
    • 2014
  • The supply rate of renewable energy has been increasing under the influence of an energy scarcity. Government has supported the use of renewable energy by government subsidies. The operation of renewable may not been operating appropriately, although increasing the use of renewable energy. We found out some problems of the operation of renewable energy and offered some improvements. This research proposes the efficient operation method for the solar thermal system, and proposed operation method was compared and evaluated with existing operation strategy after selecting one building installed solar thermal system. Recently, the interest to renewable energy has increased because of the environmental issues and energy crisis. However the utilization of the renewable energy system is low because of the use of renewable energy system and existing renewable energy system independently, although supply rate of renewable system is increasing. Especially, in the case of solar thermal system heating load is not responsible for the load of hot water supply in many cases. Therefore, suggesting efficient operation plans and evaluations of the energy consumption and efficiency of a solar thermal system is needed.

Development of an Energy Efficient Tri-Rotor Vertical Take Off and Landing Unmanned Aerial Vehicle (에너지 효율적 트리로터 수직이착륙 무인항공기 개발)

  • Park, Hee-Jin;Kong, Dong-Uck;Son, Byung-Rak;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.262-268
    • /
    • 2012
  • In the recent research technical solutions have been studied to integrate renewable energy into unmanned aerial vehicles to use it as the main power source. As the weight of the aerial vehicle body is essential for its performance, we consider to use light-weight solar cell technology. Furthermore fuel cells are also integrated create a highly energy-efficient aerial robot. In this paper, construction concept and software design of the tilt-rotor aerial vehicle GAORI is introduced which uses solar cells and fuel cells as power source. The future work direction and prognosis are discussed.

Energy Efficient Adaptive Relay Station ON/OFF Scheme for Cellular Relay Networks

  • Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • v.19 no.2
    • /
    • pp.9-15
    • /
    • 2018
  • This paper proposes an energy efficient adaptive relay station ON/OFF scheme with different frequency reuse factors (FRFs) to enhance the system throughput and reduce the transmission energy consumption for the transparent mode of 2-hop cellular relay networks (CRNs) based on orthogonal frequency division multiple access and time division duplex. In the proposed scheme, the base station turns on or off the relay stations (RSs) when they are overutilized and undertuilized based on the traffic density of the cell coverage, respectively. Through the simulation results, we show that the proposed scheme outperforms the conventional CRN in terms of the energy consumption with the same system throughput. Further, in order to increase the system throughput with low energy consumption, the best way is FRF 1 when the number of operating RSs is up to 4 and FRF 2 otherwise.

Parametric Study on Design Factors of the Shutdown Cooling Heat Exchanger Using the Taguchi Method

  • Kim Seong Hoon;Ryu Seung Yeob;Choi Byung Seon;Yoon Juhyeon;Bae Yoon Yeong;Zee Sung Kyun
    • Nuclear Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.251-259
    • /
    • 2003
  • The Taguchi method was applied to investigate the effect of design factors on the performance of the shutdown cooling heat exchanger in the SMART-P. This method provided the simulation matrix for the KDESCENT program and an efficient tool for analyzing the simulation results. Levels of the design factors were selected by the effectiveness-NTU method. From 18 runs with the KDESCENT program, it was found that the performance of the system was greatly influenced by the inlet temperature at the shell side and the mass flow rate of the reactor coolant at the tube side. After applying the Taguchi method, we identified the important design factor that should be controlled and designed carefully. This method provides an efficient way to estimate the influence of each design factor on a system performance.

A Cooperative Energy-efficient Scheduling Scheme for Heterogeneous Wireless Networks (이기종 무선망에서 에너지 효율 개선을 위한 망간 협력 기반 스케쥴링 기법)

  • Kim, Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.3-8
    • /
    • 2016
  • Wireless networks have evolved to the appearance of heterogeneous wireless networks(HetNet), where various networks provide data services with various data rates and coverage. One of technical issues for HetNet is efficient utilization of radio resources for system performance enhancement. For the next generation wireless networks, energy saving has become one of key performance indices, so energy-efficient resource management schemes for HetNet need to be developed. This paper addresses an energy-efficient scheduling for HetNet in order to improve the energy efficiency while maintaining similar system throughput as existing scheme, for which an energy-efficient scheduling that energy efficiency factor is included. Simulation results show that the proposed scheme achieves the reduction of energy consumption while admitting limited ragne of throughput degradation in comparison with the conventional proportional fair scheduling.

Energy-efficient intrusion detection system for secure acoustic communication in under water sensor networks

  • N. Nithiyanandam;C. Mahesh;S.P. Raja;S. Jeyapriyanga;T. Selva Banu Priya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1706-1727
    • /
    • 2023
  • Under Water Sensor Networks (UWSN) has gained attraction among various communities for its potential applications like acoustic monitoring, 3D mapping, tsunami detection, oil spill monitoring, and target tracking. Unlike terrestrial sensor networks, it performs an acoustic mode of communication to carry out collaborative tasks. Typically, surface sink nodes are deployed for aggregating acoustic phenomena collected from the underwater sensors through the multi-hop path. In this context, UWSN is constrained by factors such as lower bandwidth, high propagation delay, and limited battery power. Also, the vulnerabilities to compromise the aquatic environment are in growing numbers. The paper proposes an Energy-Efficient standalone Intrusion Detection System (EEIDS) to entail the acoustic environment against malicious attacks and improve the network lifetime. In EEIDS, attributes such as node ID, residual energy, and depth value are verified for forwarding the data packets in a secured path and stabilizing the nodes' energy levels. Initially, for each node, three agents are modeled to perform the assigned responsibilities. For instance, ID agent verifies the node's authentication of the node, EN agent checks for the residual energy of the node, and D agent substantiates the depth value of each node. Next, the classification of normal and malevolent nodes is performed by determining the score for each node. Furthermore, the proposed system utilizes the sheep-flock heredity algorithm to validate the input attributes using the optimized probability values stored in the training dataset. This assists in finding out the best-fit motes in the UWSN. Significantly, the proposed system detects and isolates the malicious nodes with tampered credentials and nodes with lower residual energy in minimal time. The parameters such as the time taken for malicious node detection, network lifetime, energy consumption, and delivery ratio are investigated using simulation tools. Comparison results show that the proposed EEIDS outperforms the existing acoustic security systems.

Case Studies of best practices through Energy audit (에너지진단 우수 사례소개)

  • Um, Chul-Jun;Song, Euy;Kim, Chun-Yong;Kim, Doo-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.505-510
    • /
    • 2008
  • Improving energy efficiency is the important thing of energy saving strategies that was shown up result of IEA meeting and the G8 Summit. Energy audit was started in 2006 that Korea government policy for improving energy efficiency. Who used over 2,000toe/yr(tons of oil equivalent per year) energy consumption has to perform energy audit program of obligation every five years with auditing company. HANMI C&E as a company authorized by Government has diagnosed various type building. This case studies are chosen to best practices by KEMCO. This studies present efficient recommendation methods for improving system performance.

  • PDF

A Study on Efficient Building Energy Management System Based on Big Data

  • Chang, Young-Hyun;Ko, Chang-Bae
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.82-86
    • /
    • 2019
  • We aim to use public data different from the remote BEMS energy diagnostics technology and already established and then switch the conventional operation environment to a big-data-based integrated management environment to operate and build a building energy management environment of maximized efficiency. In Step 1, various network management environments of the system integrated with a big data platform and the BEMS management system are used to collect logs created in various types of data by means of the big data platform. In Step 2, the collected data are stored in the HDFS (Hadoop Distributed File System) to manage the data in real time about internal and external changes on the basis of integration analysis, for example, relations and interrelation for automatic efficient management.

Design of Thermally Coupled Distillation Process Utilizing Existing Columns (기존 증류탑을 이용한 열복합 증류공정의 설계)

  • Lee, Moon Yong;Kim, Young Han
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.1017-1022
    • /
    • 2008
  • Though many divided wall columns are implemented in field as energy-efficient distillation columns, its application is limited due to the difficulty of building a new column. A novel energy-efficient distillation system utilizing the existing columns is proposed here. The proposed can reduce the energy consumption by about 39% comparing with the existing system. And it is shown that the proposed improves the column operability over the existing. The tray numbers of the added columns have no significant influence on the composition of a side draw.