• Title/Summary/Keyword: effects of substrate

Search Result 2,018, Processing Time 0.026 seconds

Numerical Analysis on the Design Variables and Thickness Deviation Effects on Warpage of Substrate for FCCSP (FCCSP용 기판의 warpage에 미치는 설계인자와 두께편차 영향에 대한 수치적 해석)

  • Cho, Seunghyun;Jung, Hunil;Bae, Onecheol
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.57-62
    • /
    • 2012
  • In this paper, numerical analysis by finite element method, parameter design by the Taguchi method and ANOVA method were used to analyze about effect of design deviations and thickness variations on warpage of FCCSP substrate. Based on the computed results, it was known that core material in substrate was the most determining deviation for reducing warpage. Solder resist, prepreg and circuit layer were insignificant effect on warpage relatively. But these results meant not thickness effect was little importance but mechanical properties of core material were very effective. Warpage decreased as Solder resist and circuit layer thickness decreased but effect of prepreg thickness was conversely. Also, these results showed substrate warpage would be increased to maximum 40% as thickness deviation combination. It meant warpage was affected by thickness tolerance under manufacturing process even if it were met quality requirements. Threfore, it was strongly recommended that substrate thickness deviation should be optimized and controlled precisely to reduce warpage in manufacturing process.

ED COB Package Using Aluminum Anodization (알루미늄 양극산화를 사용한 LED COB 패키지)

  • Kim, Moonjung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4757-4761
    • /
    • 2012
  • LED chip on board(COB) package has been fabricated using aluminum substrate and aluminum anodization process. An alumina layer, used as a dielectric in COB substrate, is produced on aluminum substrate by selective anodization process. Also, selective anodization process makes it possible to construct a thermal via with a fully-filled via hole. Two types of the COB package are fabricated in order to analyze the effects of their substrate types on thermal resistivity and luminous efficiency. The aluminum substrate with the thermal via shows more improved measurement results compared with the alumina substrate. These results demonstrate that selective anodization process and thermal via can increase heat dissipation of COB package in this work. In addition, it is proved experimentally that these parameters also can be enhanced using efficient layout of multiple chip in the COB package.

Effects of Some Monoterpenes on Rat Brain Monoamine Oxidase (수종 모노테르펜계 화합물이 랫드 뇌의 monoamine oxidase활성에 미치는 영향)

  • 문창규;임종석;유충규
    • Journal of Food Hygiene and Safety
    • /
    • v.10 no.4
    • /
    • pp.279-282
    • /
    • 1995
  • Eight natural or semistynthesized monoterpenes were examined for their effects in rat brain monoamine oxidase(MAO) using benzylamine as substrate. Thujone and 3-carene were found to have the inhibition effects on rat brain MAQ activity, 38% and 95% inhibition at 103M respectively. The kinetic study on 3-carene, the most potent inhibitive type. But (+) pulegon and (-) isopulegon was found to activate MAO slightly.

  • PDF

Investigation into the Effects of Process Parameters of DED Process on Deposition and Residual Stress Characteristics for Remanufacturing of Mechanical Parts (기계 부품 재제조를 위한 DED 공정 조건에 따른 적층 및 잔류응력 특성 분석)

  • Kim, D.A.;Lee, K.K.;Ahn, D.G.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.109-118
    • /
    • 2021
  • Recently, there has been an increased interest in the remanufacturing of mechanical parts using metal additive manufacturing processes in regards to resource recycling and carbon neutrality. DED (directed energy deposition) process can create desired metallic shapes on both even and uneven substrate via line-by-line deposition. Hence, DED process is very useful for the repair, retrofit and remanufacturing of mechanical parts with irregular damages. The objective of the current paper is to investigate the effects DED process parameters, including the effects of power and the scan speed of the laser, on deposition and residual stress characteristics for remanufacturing of mechanical parts using experiments and finite element analyses (FEAs). AISI 1045 is used as the substrate material and the feeding powder. The characteristic dimensions of the bead shape and the heat affected zone (HAZ) for different deposition conditions are obtained from the experimental results. Efficiencies of the heat flux model for different deposition conditions are estimated by the comparison of the results of FEAs with those of experiments in terms of the width and the depth of HAZ. In addition, the influence of the process parameters on residual stress distributions in the vicinity of the deposited region is investigated using the results of FEAs. Finally, a suitable deposition condition is predicted in regards to the bead formation and the residual stress.

Effects of RF Power, Substrate Temperature and Gas Flow Ratio on the Mechanical Properties of WCx Films Deposited by Reactive Sputtering (반응성 스퍼터링법에서의 RF전력, 기판온도 및 가스유량비가 WCx막의 기계적 특성에 끼치는 효과)

  • Park Y. K.;Lee C. M.
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.621-625
    • /
    • 2005
  • Effects of rf power, pressure, sputtering gas composition, and substrate temperature on the deposition rate of the $WC_x$ coatings were investigated. The effects of rf power and sputtering gas composition on the hardness and corrosion resistance of the $WC_x$ coatings deposited by reactive sputtering were also investigated. X-ray diffraction (XRD) and Auger electron spectroscopy (AES) analyses were performed to determine the structures and compositions of the films, respectively. The hardnesses of the films were investigated using a nanoindenter, scanning electron microscopy, ana a salt-spray test, respectively. The deposition rate of the films was proportional to rf power and inversely proportional to the $CH_4$ content of $Ar/CH_4$ sputtering gas. The deposition rate linearly increased with increasing chamber pressure. The hardness of the $WC_x$ coatings Increased as rf power increased. The highest hardness was obtained at a $Ar/CH_4$ concentration of $10 vol.\%$ in the sputtering gas. The hardness of the $WC_x$ film deposited under optimal conditions was found to be much higher than that of the electroplated chromium film, although the corrosion resistance of the former was slightly lower than that of the latter.

Effects of rapid thermal annealing and bias sputtering on the structure and properties of ZnO:Al films deposited by DC magnetron sputtering (Bias를 인가한 DC magnetron sputtering 법으로 증착된 ZnO:Al 박막의 구조적 특성과 RTP의 annealing에 따른 영향)

  • Park, Kyeong-Seok;Lee, Kyu-Seok;Lee, Sung-Wook;Park, Min-Woo;Kwak, Dong-Joo;Lim, Dong-Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.500-501
    • /
    • 2005
  • Aluminum doped zinc oxide films (ZnO:Al) were deposited on glass substrate by DC magnetron sputtering from a ZnO target mixed with 2 wt% $Al_2O_3$. The effects of substrate bias on the electrical properties and film structure were studied. Films deposited with positive bias have been annealed at $600^{\circ}C$ using rapid thermal anneal (RTA) process. The effects of RTA on the evolution of film microstructure are to be also studied using X-ray diffraction, transmission electron microscopy, and atomic force microscopy. Positive bias sputtering may induce lattice defects caused by electron bombardments during deposition. The as-deposited film microstructure evolves from the film with high defect density to more stable film condition. The electrical properties of the films after RTA process were also studied and the results were correlated with the evolution of film microstructures.

  • PDF

Detergency of PET Film Having Various Surface Free Energy : Part II The Work of Detergency and the Washability of Triolein from MAA Grafted PET Film (Polyethylene terephthalate 필름의 표면에너지 변화에 따른 세척성(제이보) MAA그라프트 PET필름에서 triolein의 세척일과 세척성)

  • Chung Hae-Won;Kim Sung-Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.12 no.2 s.27
    • /
    • pp.225-235
    • /
    • 1988
  • The effects of surface free energy of substrates on the soiling and on the detergency of the oily soil were studied. The surface tension consisted of dispersion force and polar force components of substrate, oily soil and surfactant solutions were calculated by extended Fowkes' equation. From these values, work of adhesion($W_a$), work of detergency($W_D$), ana residual work of detergency($W_{D,R}$) were calculated. The correlations between these theoretical values of the works and detergency were discussed. MAA grafted PET film was used as substrate, triolein as oily soil and nonylphenol polyoxyethylene ether(NPE) having various mole numbers of oxyethylene adducts and dodecylbenzene sulfonate (DBS) as surfactants. Detergency was estimated by means of radioactive tracer method using $C^{14}-triolein$. The results showed that $W_a$ was decreased with the increase of surface free energy of substrate. In water, $W_D\;and\;W_{D,R}$ were decreased and detergency of tiolein was increased with the increase of surface free energy of substrate. In surfactant solutions, the lower the surface free energy of substrate and the lower oxyethylene adducts of NPE were the more effective on detergency. The detergency of DBS solution was the lowest in the case of ungrafted PET film, but even small increase in surface free energy by grafting showed much increase in detergency.

  • PDF

Influence of Substrate Phase and Inclination Angle on Heat Transfer Characteristics in Vicinity of Hastelloy X Regions Deposited on S45C via Directed Energy Deposition (DED 공정을 이용한 S45C 위 Hastelloy X 분말 적층 시 기저부 상과 경사각이 적층부 인근 열전달 특성에 미치는 영향에 관한 연구)

  • Baek, Sun-Ho;Lee, Kwang-Kyu;Ahn, Dong-Kyu;Kim, Woo-Sung;Lee, Ho-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.27-37
    • /
    • 2021
  • The use of additive manufacturing processes for the repair and remanufacturing of mechanical parts has attracted considerable attention because of strict environmental regulations. Directed energy deposition (DED) is widely used to retrofit mechanical parts. In this study, finite element analyses (FEAs) were performed to investigate the influence of the substrate phase and inclination angle on the heat transfer characteristics in the vicinity of Hastelloy X regions deposited via DED. FE models that consider the bead size and hatch distance were designed. A volumetric heat source model with a Gaussian distribution in a plane was adopted as the heat flux model for DED. The substrate and the deposited powder were S45C structural steel and Hastelloy X, respectively. Temperature-dependent thermal properties were considered while performing the FEAs. The effects of the substrate phase and inclination angle on the temperature distributions and depth of the heat-affected zone (HAZ) in the vicinity of the deposited regions were examined. Furthermore, the influence of deposition paths on depths of the HAZ were investigated. The results of the analyses were used to determine the suitable phase and inclination angle of the substrate as well as the appropriate deposition path.

Upcycling the Spent Mushroom Substrate of the Grey Oyster Mushroom Pleurotus pulmonarius as a Source of Lignocellulolytic Enzymes for Palm Oil Mill Effluent Hydrolysis

  • Yunan, Nurul Anisa Mat;Shin, Tan Yee;Sabaratnam, Vikineswary
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.823-832
    • /
    • 2021
  • Mushroom cultivation along with the palm oil industry in Malaysia have contributed to large volumes of accumulated lignocellulosic residues that cause serious environmental pollution when these agroresidues are burned. In this study, we illustrated the utilization of lignocellulolytic enzymes from the spent mushroom substrate of Pleurotus pulmonarius for the hydrolysis of palm oil mill effluent (POME). The hydrolysate was used for the production of biohydrogen gas and enzyme assays were carried out to determine the productivities/activities of lignin peroxidase, laccase, xylanase, endoglucanase and β-glucosidase in spent mushroom substrate. Further, the enzyme cocktails were concentrated for the hydrolysis of POME. Central composite design of response surface methodology was performed to examine the effects of enzyme loading, incubation time and pH on the reducing sugar yield. Productivities of the enzymes for xylanase, laccase, endoglucanase, lignin peroxidase and β-glucosidase were 2.3, 4.1, 14.6, 214.1, and 915.4 U g-1, respectively. A maximum of 3.75 g/lof reducing sugar was obtained under optimized conditions of 15 h incubation time with 10% enzyme loading (v/v) at a pH of 4.8, which was consistent with the predicted reducing sugar concentration (3.76 g/l). The biohydrogen cumulative volume (302.78 ml H2.L-1 POME) and 83.52% biohydrogen gas were recorded using batch fermentation which indicated that the enzymes of spent mushroom substrate can be utilized for hydrolysis of POME.

Properties of ZnO:Ga Thin Film Fabricated on Polyimide Substrate by RF Magnetron Sputtering (폴리이미드 기판 위에 RF 마그네트론 스퍼터링 공정으로 증착된 ZnO:Ga 박막의 특성)

  • Park, Seung-Beum;Kim, Jeong-Yeon;Kim, Byeong-Guk;Lim, Jong-Youb;Yeo, In-Hwan;Ahn, Sang-Ki;Kweon, Soon-Yong;Park, Jae-Hwan;Lim, Dong-Gun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.374-378
    • /
    • 2010
  • The effects of $O_2$ plasma pretreatment on the properties of Ga-doped ZnO films on polyimide substrate were studied. GZO films were fabricated by RF magnetron sputtering process. To improve surface energy and adhesion between the polyimide substrate and the GZO film, $O_2$ plasma pretreatment process was used prior to GZO sputtering. As the RF power and the treatment time increased, the crystallinity increased and the contact angle decreased significantly. When the RF power was 100 W and the treatment time was 120 sec, the resistivity of GZO films on the polyimide substrate was $1.90{\times}10^{-3}{\Omega}-cm$.