• Title/Summary/Keyword: effects of substrate

Search Result 2,018, Processing Time 0.047 seconds

Effect of Ultrasound-Induced Hyperthermia on Cellular Uptake of P-gp Substrate and Non-P-gp Substrate in MDR Cells

  • Cho, Cheong-Weon;Kim, Dong-Chool;Shin, Sang-Chul
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.3
    • /
    • pp.131-135
    • /
    • 2007
  • A previous report recently demonstrated that ultrasound-induced hyperthermia (USHT:0.4 watts (W)/$cm^2$ at $41^{\circ}C$) could increase cellular uptake of P-glycoprotein (P-gp) substrates in P-gp expressing cancer cell lines. Since P-gp plays a major role in limiting drug permeability in the multi-drug resistant (MDR) cells, studies were conducted to elucidate the mechanism of USHT on cellular accumulation of P-gp and non-P-gp substrate in MDR cells. To accomplish this aim, we studied the effects of USHT on the accumulation of P-gp substrate, R123 and non-P-gp substrate, antipyrine in MDR cells. We demonstrated that USHT increased permeability of hydrophobic molecules (R123 and $[^{14}C]$-antipyrine). The enhanced permeability is reversible and size-dependent as USHT produces a much larger effect on cellular accumulation of $[^{14}C]$-antipyrine (MW 188) than that of R123 (MW 380.8). These results suggest that USHT could affect MDR cells more sensitive than BBMECs. Also, the present results point to the potential use of USHT to increase cellular uptake of P-gp recognized substrates, mainly anti-cancer agents into cancer cells.

Flame Synthesis of Carbon Nanofibers using SUS304 Substrates (촉매금속 기판을 사용한 탄소나노섬유의 연소합성)

  • Lee, Gyo-Woo;Jurng, Jong-Soo;Hwang, JungHo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1378-1383
    • /
    • 2003
  • Synthesis of carbon nanofibers on a metal substrate by an ethylene fueled inverse diffusion flame was illustrated. Stainless steel plates were used for the catalytic metal substrate. The effects of radial distance and residence time of the substrate were investigated. The role of hydrocarbon composition in the fuel was also viewed. Nanofibers with a diameter range of 30-70 nm were found on the substrate. The carbon nanofibers were formed and grown in the region from 4 to 5.5 mm from the central axis of a flame outside of the visible flame front in the radial direction. The minimum residence time required for the formation of carbon nanofibers were about 20 seconds, and over 60 seconds were required for the full-scale growth. The characteristic time of the formation of carbon nanofibers was much shorter than that of the substrate temperature growth. In this study, the variation in hydrocarbon composition had no significant effect on the formation and growth of the carbon nanofibers.

  • PDF

Effects of the Distribution of Nickel-Nitrate and the Substrate Temperature on the Synthesis of Multi-Walled Carbon Nanotubes (기판 상에 합성한 탄소나노튜브의 성장에 미치는 촉매금속 입자의 분포와 기판온도의 영향)

  • Lee, Gyo-Woo;Jung, Jong-Soo;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.215-222
    • /
    • 2004
  • Synthesis of multi-walled carbon nanotubes on a nickel-nitrate-deposited substrate using an ethylene fueled inverse diffusion flame was illustrated. The deposition of nickel-nitrate particles on substrates was used for the smaller-diameter nanotubes than those formed in our previous studies. Also the effect of temperature variations on the size of formed nanotubes was investigated. The diameters of formed multi-walled carbon nanotubes were ranging from 15 to 100 nm in the several radial locations. In case of using a nickel-nitrate-deposited substrate, the smaller-diameter carbon nanotubes were synthesized than those in case of using the substrate with melted nickel-nitrate. In the formation region of carbon nanotubes, the diameter of formed nanotubes was tend to be decrease as the radial distance form the flame center was increased, that is the decreased substrate temperature.

Electrical and optical properties of ZnO:Al transparent conducting films deposited on flexible polymeric substrate (플렉시블한 폴리머 기판위에 증착된 ZnO:Al 투명전도막의 전기 및 광학적 특성)

  • Jessie, Darma;Park, Byung-Wook;Sung, Youl-Moon;Kwak, Dong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1262-1263
    • /
    • 2008
  • Recently film-typed dye sensitized solar cell(DSC) attracts much attention with increasing applications for its flexibility and transparency. The ZnO:Al thin film, which serves mainly as transparent conducting electrode, Aluminium-doped zinc oxide(ZnO:Al) thin film has emerged as one of the most promising transparent conducting films since it is inexpensive, mechanically stable, and highly resistant to deoxidation. In this paper ZnO:Al thin film was deposited on the polyethylene terephthalate(PET) substrate by the capacitively coupled r. f. magnetron sputtering method. The effects of gas pressure and r. f. discharge power on the morphological, electrical and optical properties of ZnO:Al thin film were studied. Especially the variation in substrate thickness after sputtering and surface morphology of the substrate were investigated and clarified. The results showed that the film deposited on the PET substrate at r. f. discharge power of 180 W showed the minimum resistivity of about $1.5{\times}10^{-3}{\Omega}-cm$ and a transmittance of about 93%.

  • PDF

Effect of cold-spray deposition on deformation of aluminum alloy substrate (초음속 저온분사법에 의한 알루미늄 분말 적층에서 얇은 모재에 발생하는 변형에 대한 연구)

  • Lee Jae-Chul;Chun Doo-Man;Kim Sung-Geun;Ahn Sung-Hoon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.99-100
    • /
    • 2006
  • Cold gas dynamic spray or cold-spray is a deposition process, which causes deformation of a thin substrate. The deformation is usually convex to the deposited side. In this research, the main cause of the deformation was investigated using 6061-T6 aluminum alloy. The effects or anisotropic coefficient or thermal expansion (CTE) or the deposited layer by cold-spray and residual stress were studied by experiments and finite element analysis. The Hole Drilling method was applied to measure residual stress in the cold-spray layer and substrate. The data obtained by the experiments were used for the analysis of substrate deformation. From the result of the analysis, it was concluded that compressive residual stress was the main reason of substrate deformation while CTE had little effect.

  • PDF

Diamond Synthesis by Acetylen Flame (아세틸렌 불꽃에 의한 다이아몬드 합성)

  • 이윤석;박윤휘;이태근;정수진
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.926-934
    • /
    • 1992
  • Uniform diamond films in a few $\textrm{mm}^2$ size and locally isolated diamond single crystals in size of 60 $\mu\textrm{m}$ were synthesized on Si-wafer and Al2O3 substrate by the method of acetylene flame. The effects of substrate temperature and flow ratio of oxygen to acetylene on the morphology of deposited diamond were investigated. According to the observations of growth behavior of diamond on Si substrate with respect to substrate surface pretreatment and flow ratio, it was shown that well faceted diamonds could grow uniformly when flow ratio was above 0.9 and substrates were densely scratched. With increasing substrates temperature, the crystal morphology changes from octahedron bounded by only {111} plane below 850$^{\circ}C$ to cubo-octahedron with almost equal development of {111} and {100} plane in the temperature range of 850∼950$^{\circ}C$. Between 950∼1050$^{\circ}C$, the {111} faces become rough and concave. Above 1050$^{\circ}C$, new crystallites begin to grow on concave {111} surface and overall morphology looks like cubo-octahedron with degenerated {111} faces. These changes of morphology can be understood in terms of the different growth mode of each crystallographic plane with respect to the substrate temperature and supersaturation. And the observed phenomena on {111} planes can be related to the face instability and twin generation.

  • PDF

Fabrication of Al-doped ZnO Thin Films by Vertical In-line DC Magnetron Sputtering

  • Heo, Gi-Seok;Kim, Tae-Won;Lee, Jong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.41-41
    • /
    • 2008
  • Al-doped ZnO (AZO) thin films have been fabricated by vertical in-line dc magnetron sputtering for transparent conducting oxides (TCOs) applications. The effects of substrate temperature and dc power on the characteristics of AZO thin films are investigated and also optimized the process conditions to get the best electrical and optical properties. The fabricated thin films show a good electrical and optical uniformity within ${\pm}5%$ over the whole area of substrate ($200mm\;{\times}\;200mm$) ; the minimum resistivity of $8\;{\times}\;10^{-4}\;{\Omega}cm$ and the average transmittance of 90% within the visible wavelength range. We have found that the band gap ($E_g$) increases with increasing substrate temperature and dc power, whereas the crystallinity is getting improved with increasing substrate temperature. The binding energy of Zn $2p_{3/2}$ and O 1s is observed to decrease as the substrate temperature increases.

  • PDF

Texture Evolution in Ni Substrate Prepared by Powder Metallurgy and Casting Methods

  • Lim, Jun-Hyung;Kim, Kyu-Tae;Park, Eui-Cheol;Joo, Jin-Ho;Kim, Hyoung-Sub;Lee, Hoo-Jeong;Jung, Seung-Boo;Nah, Wan-Soo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1249-1250
    • /
    • 2006
  • Cube textured Ni substrate were fabricated for YBCO coated conductors from the initial specimens prepared by powder metallurgy (P/M) and casting and the effects of annealing temperature and reduction ratio on texture formation and microstructural evolution were evaluated. The initial specimens were rolled and then annealed in the temperature at $600^{\circ}C{\sim}1200^{\circ}C$. A strong cube texture formed for P/M substrate, and the degree of texture did not significantly vary with annealing temperature of $600^{\circ}C{\sim}1100^{\circ}C$. On the other hand, the texture of casting substrate was more dependent on the annealing temperature and twin texture and several minor texture components started to form at $1000^{\circ}C$.

  • PDF

The Effects of Substrate Temperature on Electrical and Physical Properties of ZnO:Al for the Application of Solar Cells (태양전지 응용을 위한 ZnO:Al 박막의 전기적·물리적 특성에서 증착 온도의 영향)

  • Park, Chan Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.39-43
    • /
    • 2021
  • In the case of ZnO:Al thin films, it is the best material that can replace ITO that is mainly used as a transparent electrode in electronic devices such as solar cells and flat-panel displays. In this study, ZnO:Al films were fabricated by using the RF dual magnetron sputtering method at various substrate temperatures. As the substrate temperature increased, the crystallinity of the ZnO:Al thin films was improved, and the electrical conductivity and electrical properties of the thin film improved owing to the increase in grain size. In addition, the surface roughness of the ZnO:Al thin films increased due to changes in the surface and density of the thin films. Moreover, the substrate temperature increased the density of thin films and improved their transmittance. To be applied to solar cells and other several electronic devices in the future, the hardness and adhesion properties of the thin film improve as the substrate temperature increases.

Effects of Substrate Temperatures on the Crystallinity and Electrical Properties of PLZT Thin Films (기판온도에 따른 PLZT 박막의 결정성과 전기적 특성)

  • Lee, In-Seok;Yoon, Ji-Eun;Kim, Sang-Jih;Son, Young-Guk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.1
    • /
    • pp.29-34
    • /
    • 2009
  • PLZT thin films were deposited on platinized silicon (Pt/$TiSiO_2$/Si) substrate by RF magnetron sputtering. A $TiO_2$ buffer layer was fabricated, prior to deposition of PLZT films. the layer was strongly affected the crystallographic orientation of the PLZT films. X-ray diffraction was performed on the films to study the crystallization of the films as various substrate temperatures (Ts). According to increasing Ts, preferred orientation of films was changed (110) plane to (111) plane. The ferroelectric, dielectric and electrical properties of the films were also investigated in detail as increased substrate temperatures. The PLZT films deposited at $400^{\circ}C$ showed good ferroelectric properties with the remnant polarization of $15.8{\mu}C/cm^2$ and leakage current of $5.4{\times}10^{-9}\;A/cm^2$.