• Title/Summary/Keyword: effector $CD8^+$ T cells

Search Result 30, Processing Time 0.032 seconds

Bispecific Antibody-Bound T Cells as a Novel Anticancer Immunotherapy

  • Cho, Jaewon;Tae, Nara;Ahn, Jae-Hee;Chang, Sun-Young;Ko, Hyun-Jeong;Kim, Dae Hee
    • Biomolecules & Therapeutics
    • /
    • v.30 no.5
    • /
    • pp.418-426
    • /
    • 2022
  • Chimeric antigen receptor T (CAR-T) cell therapy is one of the promising anticancer treatments. It shows a high overall response rate with complete response to blood cancer. However, there is a limitation to solid tumor treatment. Additionally, this currently approved therapy exhibits side effects such as cytokine release syndrome and neurotoxicity. Alternatively, bispecific antibody is an innovative therapeutic tool that simultaneously engages specific immune cells to disease-related target cells. Since programmed death ligand 1 (PD-L1) is an immune checkpoint molecule highly expressed in some cancer cells, in the current study, we generated αCD3xαPD-L1 bispecific antibody (BiTE) which can engage T cells to PD-L1+ cancer cells. We observed that the BiTE-bound OT-1 T cells effectively killed cancer cells in vitro and in vivo. They substantially increased the recruitment of effector memory CD8+ T cells having CD8+CD44+CD62Llow phenotype in tumor. Interestingly, we also observed that BiTE-bound polyclonal T cells showed highly efficacious tumor killing activity in vivo in comparison with the direct intravenous treatment of bispecific antibody, suggesting that PD-L1-directed migration and engagement of activated T cells might increase cancer cell killing. Additionally, BiTE-bound CAR-T cells which targets human Her-2/neu exhibited enhanced killing effect on Her-2-expressing cancer cells in vivo, suggesting that this could be a novel therapeutic regimen. Collectively, our results suggested that engaging activated T cells with cancer cells using αCD3xαPD-L1 BiTE could be an innovative next generation anticancer therapy which exerts simultaneous inhibitory functions on PD-L1 as well as increasing the infiltration of activated T cells having effector memory phenotype in tumor site.

Tumor Induces the Expansion of Foxp3+CD25high and CD11b+Gr-1+ Cell Population in the Early Phase of Tumor Progression

  • Lee, Na Kyung;Kim, Hong Sung
    • Biomedical Science Letters
    • /
    • v.21 no.4
    • /
    • pp.172-180
    • /
    • 2015
  • It is well reported that tumor cells can regulate host immune systems. To identify the detailed changes of immune cells between tumor bearing mice and normal mice, we evaluated the systemic immune cell phenotype of B16F10 tumor bearing mice in a time dependent manner. The lymphocytic population (CD4+ and CD8+ T cells) of tumor bearing mice significantly decreased compared to that of normal mice. We found that the Foxp3+CD25+ CD4 T cell decreased, but the Foxp3+$CD25^{high}$ CD4 T cell significantly increased. All subpopulations of CD8 T cells decreased, except the CD62L-CD44+ CD8 T cell subpopulation. The myeloid cell population (CD11b+ and Gr-1+ cells) of tumor bearing mice significantly increased. Specifically, Foxp3+$CD25^{high}$ CD4 T cell and CD11b+Gr-1+ cells significantly increased in early phase of tumor progression. These results are helpful to understand the change of the systemic immune cell subpopulation of tumor bearing mice in a time-dependent manner.

CD5 Expression Dynamically Changes During the Differentiation of Human CD8+ T Cells Predicting Clinical Response to Immunotherapy

  • Young Ju Kim;Kyung Na Rho;Saei Jeong;Gil-Woo Lee;Hee-Ok Kim;Hyun-Ju Cho;Woo Kyun Bae;In-Jae Oh;Sung-Woo Lee;Jae-Ho Cho
    • IMMUNE NETWORK
    • /
    • v.23 no.4
    • /
    • pp.35.1-35.16
    • /
    • 2023
  • Defining the molecular dynamics associated with T cell differentiation enhances our understanding of T cell biology and opens up new possibilities for clinical implications. In this study, we investigated the dynamics of CD5 expression in CD8+ T cell differentiation and explored its potential clinical uses. Using PBMCs from 29 healthy donors, we observed a stepwise decrease in CD5 expression as CD8+ T cells progressed through the differentiation stages. Interestingly, we found that CD5 expression was initially upregulated in response to T cell receptor stimulation, but diminished as the cells underwent proliferation, potentially explaining the differentiation-associated CD5 downregulation. Based on the proliferation-dependent downregulation of CD5, we hypothesized that relative CD5 expression could serve as a marker to distinguish the heterogeneous CD8+ T cell population based on their proliferation history. In support of this, we demonstrated that effector memory CD8+ T cells with higher CD5 expression exhibited phenotypic and functional characteristics resembling less differentiated cells compared to those with lower CD5 expression. Furthermore, in the retrospective analysis of PBMCs from 30 non-small cell lung cancer patients, we found that patients with higher CD5 expression in effector memory T cells displayed CD8+ T cells with a phenotype closer to the less differentiated cells, leading to favorable clinical outcomes in response to immune checkpoint inhibitor (ICI) therapy. These findings highlight the dynamics of CD5 expression as an indicator of CD8+ T cell differentiation status, and have implications for the development of predictive biomarker for ICI therapy.

Increase of Vδ2+ T Cells That Robustly Produce IL-17A in Advanced Abdominal Aortic Aneurysm Tissues

  • In-Ho Seo;Seung-Jun Lee;Tae Wook Noh;Jung-Hwan Kim;Hyun-Chel Joo;Eui-Cheol Shin;Su-Hyung Park;Young-Guk Ko
    • IMMUNE NETWORK
    • /
    • v.21 no.2
    • /
    • pp.17.1-17.10
    • /
    • 2021
  • Abdominal aortic aneurysm (AAA) is a chronic dilation of the aorta with a tendency to enlarge and eventually rupture, which constitutes a major cause of cardiovascular mortality. Although T-cell infiltrates have been observed in AAA, the cellular, phenotypic, and functional characteristics of these tissue-infiltrating T cells are not fully understood. Here, we investigated the proportional changes of T-cell subsets-including CD4+ T cells, CD8+ T cells, and γδ T cells-and their effector functions in AAAs. We found that Vδ2+ T cells were presented at a higher frequency in aortic aneurysmal tissue compared to normal aortic tissue and PBMCs from patients with AAA. In contrast, no differences were observed in the frequencies of CD4+, CD8+, and Vδ1+ T cells. Moreover, we observed that the Vδ2+ T cells from AAA tissue displayed immunophenotypes indicative of CCR5+ non-exhausted effector memory cells, with a decreased proportion of CD16+ cells. Finally, we found that these Vδ2+ T cells were the main source of IL-17A in abdominal aortic aneurysmal tissue. In conclusion, our results suggest that increased Vδ2+ T cells that robustly produce IL-17A in aortic aneurysmal tissue may contribute to AAA pathogenesis and progression.

Effector Memory CD8+ and CD4+ T Cell Immunity Associated with Metabolic Syndrome in Obese Children

  • Yang, Da-Hee;Lee, Hyunju;Lee, Naeun;Shin, Min Sun;Kang, Insoo;Kang, Ki-Soo
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.24 no.4
    • /
    • pp.377-383
    • /
    • 2021
  • Purpose: We investigated the association of effector memory (EM) CD8+ T cell and CD4+ T cell immunity with metabolic syndrome (MS). Methods: Surface and intracellular staining of peripheral blood mononuclear cells was performed. Anti-interleukin-7 receptor-alpha (IL-7Rα) and CX3CR1 antibodies were used to stain the subsets of EM CD8+ T cells, while anti-interferon-gamma (IFN-γ), interleukin-17 (IL-17), and forkhead box P3 (FOXP3) antibodies were used for CD4+ T cell subsets. Results: Of the 47 obese children, 11 were female. Children with MS had significantly higher levels of serum insulin (34.8±13.8 vs. 16.4±6.3 µU/mL, p<0.001) and homeostasis model assessment of insulin resistance (8.9±4.1 vs. 3.9±1.5, p<0.001) than children without MS. Children with MS revealed significantly higher frequencies of IL-7Rαlow CD8+ T cells (60.1±19.1% vs. 48.4±11.5%, p=0.047) and IL-7RαlowCX3CR1+ CD8+ T cells (53.8±20.1% vs. 41.5±11.9%, p=0.036) than children without MS. As the serum triglyceride levels increased, the frequency of IL-7RαlowCX3CR1+ and IL-7RαhighCX3CR1- CD8+ T cells increased and decreased, respectively (r=0.335, p=0.014 and r=-0.350, p=0.010, respectively), in 47 children. However, no CD4+ T cell subset parameters were significantly different between children with and without MS. Conclusion: In obese children with MS, the changes in immunity due to changes in EM CD8+ T cells might be related to the morbidity of obesity.

Oncolytic Vaccinia Virus Expressing 4-1BBL Inhibits Tumor Growth by Increasing CD8+ T Cells in B16F10 Tumor Model

  • Lee, Na-Kyung;Kim, Hong-Sung
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.210-217
    • /
    • 2012
  • Oncolytic viral vectors have shown good candidates for cancer treatment but have many limitations. To improve the therapeutic potential of oncolytic vaccinia virus, we developed a recombinant vaccinia virus expressing the 4-1BBL co-stimulatory molecule or CCL21. 4-1BBL and CCL21 expression was identified by FACS analysis and immunoblotting. rV-4-1BBL vaccination shows significant tumor regression compared to rV-LacZ, but rV-CCL21 shows rapid tumor growth compared to rV-LacZ in the poorly immunogenic B16 murine melanoma model. 4-1BBL expression resulted in the increase of the number of CD8+ T cells and especially the increase of effector (CD62L-CD44+) CD8+ T cells. These data suggest 4-1BBL may be the potential target for enhancement of tumor immunotherapy.

Regulation of Tumor Immune Surveillance and Tumor Immune Subversion by TGF-$\beta$

  • Park, Hae-Young;Wakefield, Lalage M;Mamura, Mizuko
    • IMMUNE NETWORK
    • /
    • v.9 no.4
    • /
    • pp.122-126
    • /
    • 2009
  • Transforming growth factor-$\beta$ (TGF-$\beta$) is a highly pleiotropic cytokine playing pivotal roles in immune regulation. TGF-$\beta$ facilitates tumor cell survival and metastasis by targeting multiple cellular components. Focusing on its immunosuppressive functions, TGF-$\beta$ antagonists have been employed for cancer treatment to enhance tumor immunity. TGF-$\beta$ antagonists exert anti-tumor effects through #1 activating effector cells such as NK cells and cytotoxic $CD8^+$ Tcells (CTLs), #2 inhibiting regulatory/suppressor cell populations, #3 making tumor cells visible to immune cells, #4 inhibiting the production of tumor growth factors. This review focuses on the effect of TGF-$\beta$ on T cells, which are differentiated into effector T cells or newly identified tumor-supporting T cells.

Natural Killer and CD8 T Cells Contribute to Protection by Formalin Inactivated Respiratory Syncytial Virus Vaccination under a CD4-Deficient Condition

  • Eun-Ju Ko;Youri Lee;Young-Tae Lee;Hye Suk Hwang;Yoonsuh Park;Ki-Hye Kim;Sang-Moo Kang
    • IMMUNE NETWORK
    • /
    • v.20 no.6
    • /
    • pp.51.1-51.17
    • /
    • 2020
  • Respiratory syncytial virus (RSV) causes severe pulmonary disease in infants, young children, and the elderly. Formalin inactivated RSV (FI-RSV) vaccine trials failed due to vaccine enhanced respiratory disease, but the underlying immune mechanisms remain not fully understood. In this study, we have used wild type C57BL/6 and CD4 knockout (CD4KO) mouse models to better understand the roles of the CD4 T cells and cellular mechanisms responsible for enhanced respiratory disease after FI-RSV vaccination and RSV infection. Less eosinophil infiltration and lower pro-inflammatory cytokine production were observed in FI-RSV vaccinated CD4KO mice after RSV infection compared to FI-RSV vaccinated C57BL/6 mice. NK cells and cytokine-producing CD8 T cells were recruited at high levels in the airways of CD4KO mice, correlating with reduced respiratory disease. Depletion studies provided evidence that virus control was primarily mediated by NK cells whereas CD8 T cells contributed to IFN-γ production and less eosinophilic lung inflammation. This study demonstrated the differential roles of effector CD4 and CD8 T cells as well as NK cells, in networking with other inflammatory infiltrates in RSV disease in immune competent and CD4-deficient condition.

Enhancing T Cell Immune Responses by B Cell-based Therapeutic Vaccine Against Chronic Virus Infection

  • Kim, Min Ki;Lee, Ara;Hwang, Yu Kyeong;Kang, Chang-Yuil;Ha, Sang-Jun
    • IMMUNE NETWORK
    • /
    • v.14 no.4
    • /
    • pp.207-218
    • /
    • 2014
  • Chronic virus infection leads to the functional impairment of dendritic cells (DCs) as well as T cells, limiting the clinical usefulness of DC-based therapeutic vaccine against chronic virus infection. Meanwhile, B cells have been known to maintain the ability to differentiate plasma cells producing antibodies even during chronic virus infection. Previously, ${\alpha}$-galactosylceramide (${\alpha}GC$) and cognate peptide-loaded B cells were comparable to DCs in priming peptide-specific $CD8^+$ T cells as antigen presenting cells (APCs). Here, we investigated whether B cells activated by ${\alpha}GC$ can improve virus-specific T cell immune responses instead of DCs during chronic virus infection. We found that comparable to B cells isolated from naïve mice, chronic B cells isolated from chronically infected mice with lymphocytic choriomeningitis virus (LCMV) clone 13 (CL13) after ${\alpha}GC$-loading could activate CD1d-restricted invariant natural killer T (iNKT) cells to produce effector cytokines and upregulate co-stimulatory molecules in both naïve and chronically infected mice. Similar to naïve B cells, chronic B cells efficiently primed LCMV glycoprotein (GP) 33-41-specific P14 $CD8^+$ T cells in vivo, thereby allowing the proliferation of functional $CD8^+$ T cells. Importantly, when ${\alpha}GC$ and cognate epitope-loaded chronic B cells were transferred into chronically infected mice, the mice showed a significant increase in the population of epitope-specific $CD8^+$ T cells and the accelerated control of viremia. Therefore, our studies demonstrate that reciprocal activation between ${\alpha}GC$-loaded chronic B cells and iNKT cells can strengthen virus-specific T cell immune responses, providing an effective regimen of autologous B cell-based therapeutic vaccine to treat chronic virus infection.

Acetate decreases PVR/CD155 expression via PI3K/AKT pathway in cancer cells

  • Tran, Na Ly;Lee, In Kyu;Choi, Jungkyun;Kim, Sang-Heon;Oh, Seung Ja
    • BMB Reports
    • /
    • v.54 no.8
    • /
    • pp.431-436
    • /
    • 2021
  • In recent years, restoring anti-tumor immunity has garnered a growing interest in cancer treatment. As potential therapeutics, immune checkpoint inhibitors have demonstrated benefits in many clinical studies. Although various methods have been applied to suppress immune checkpoints to boost anti-tumor immunity, including the use of immune checkpoint inhibitors, there are still unmet clinical needs to improve the response rate of cancer treatment. Here, we show that acetate can suppress the expression of poliovirus receptor (PVR/CD155), a ligand for immune checkpoint, in colon cancer cells. We demonstrated that acetate treatment could enhance effector responses of CD8+ T cells by decreasing the expression of PVR/CD155 in cancer cells. We also found that acetate could reduce the expression of PVR/CD155 by deactivating the PI3K/AKT pathway. These results demonstrate that acetate-mediated expression of PVR/CD155 in cancer cells might potentiate the anti-tumor immunity in the microenvironment of cancer. Our findings indicate that maintaining particular acetate concentrations could be a complementary strategy in current cancer treatment.