DOI QR코드

DOI QR Code

CD5 Expression Dynamically Changes During the Differentiation of Human CD8+ T Cells Predicting Clinical Response to Immunotherapy

  • Young Ju Kim (Medical Research Center for Combinatorial Tumor Immunotherapy, Department of Microbiology and Immunology, Chonnam National University Medical School) ;
  • Kyung Na Rho (Medical Research Center for Combinatorial Tumor Immunotherapy, Department of Microbiology and Immunology, Chonnam National University Medical School) ;
  • Saei Jeong (Medical Research Center for Combinatorial Tumor Immunotherapy, Department of Microbiology and Immunology, Chonnam National University Medical School) ;
  • Gil-Woo Lee (Medical Research Center for Combinatorial Tumor Immunotherapy, Department of Microbiology and Immunology, Chonnam National University Medical School) ;
  • Hee-Ok Kim (Selecxine) ;
  • Hyun-Ju Cho (Department of Internal Medicine, Chonnam National University Hwasun Hospital) ;
  • Woo Kyun Bae (Department of Internal Medicine, Chonnam National University Hwasun Hospital) ;
  • In-Jae Oh (Department of Internal Medicine, Chonnam National University Hwasun Hospital) ;
  • Sung-Woo Lee (Medical Research Center for Combinatorial Tumor Immunotherapy, Department of Microbiology and Immunology, Chonnam National University Medical School) ;
  • Jae-Ho Cho (Medical Research Center for Combinatorial Tumor Immunotherapy, Department of Microbiology and Immunology, Chonnam National University Medical School)
  • Received : 2023.06.30
  • Accepted : 2023.08.16
  • Published : 2023.08.31

Abstract

Defining the molecular dynamics associated with T cell differentiation enhances our understanding of T cell biology and opens up new possibilities for clinical implications. In this study, we investigated the dynamics of CD5 expression in CD8+ T cell differentiation and explored its potential clinical uses. Using PBMCs from 29 healthy donors, we observed a stepwise decrease in CD5 expression as CD8+ T cells progressed through the differentiation stages. Interestingly, we found that CD5 expression was initially upregulated in response to T cell receptor stimulation, but diminished as the cells underwent proliferation, potentially explaining the differentiation-associated CD5 downregulation. Based on the proliferation-dependent downregulation of CD5, we hypothesized that relative CD5 expression could serve as a marker to distinguish the heterogeneous CD8+ T cell population based on their proliferation history. In support of this, we demonstrated that effector memory CD8+ T cells with higher CD5 expression exhibited phenotypic and functional characteristics resembling less differentiated cells compared to those with lower CD5 expression. Furthermore, in the retrospective analysis of PBMCs from 30 non-small cell lung cancer patients, we found that patients with higher CD5 expression in effector memory T cells displayed CD8+ T cells with a phenotype closer to the less differentiated cells, leading to favorable clinical outcomes in response to immune checkpoint inhibitor (ICI) therapy. These findings highlight the dynamics of CD5 expression as an indicator of CD8+ T cell differentiation status, and have implications for the development of predictive biomarker for ICI therapy.

Keywords

Acknowledgement

We thank JH Rhee (CNU) and DH Yang and IJ Chung (CNUHH) for critical comments on clinical data; HW Ryu, MJ Ryu and SM Ahn (CNU) for laboratory management and administrative assistance; CNU flow cytometric core facilities for assistance with cell sorting; and MS Park (CNUHH) and MS Kim (CNU) for blood collection, mice breeding and care. We also thank the Korean Red Cross and the Biobank of CNU Hwasun Hospital for providing biospecimens used for this study. This work was supported by a grant from the National Research Foundation (NRF) funded by the Korean Ministry of Science and ICT (2020R1A5A2031185, 2020M3A9G3080281 and 2022R1A2C2009385) and by the Korean Ministry of Education (2022R1A6A3A01086438 for SW Lee), a grant (HCRI 19001-1*HCRI20012) of Chonnam National University Hwasun Hospital and a new faculty research grant (2020-2029) of Chonnam National University.

References

  1. Larbi A, Fulop T. From "truly naive" to "exhausted senescent" T cells: when markers predict functionality. Cytometry A 2014;85:25-35. https://doi.org/10.1002/cyto.a.22351
  2. Gonzalez NM, Zou D, Gu A, Chen W. Schrodinger's T cells: molecular insights into stemness and exhaustion. Front Immunol 2021;12:725618.
  3. Crompton JG, Narayanan M, Cuddapah S, Roychoudhuri R, Ji Y, Yang W, Patel SJ, Sukumar M, Palmer DC, Peng W, et al. Lineage relationship of CD8+ T cell subsets is revealed by progressive changes in the epigenetic landscape. Cell Mol Immunol 2016;13:502-513. https://doi.org/10.1038/cmi.2015.32
  4. Appay V, van Lier RA, Sallusto F, Roederer M. Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A 2008;73:975-983. https://doi.org/10.1002/cyto.a.20643
  5. Azzam HS, Grinberg A, Lui K, Shen H, Shores EW, Love PE. CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. J Exp Med 1998;188:2301-2311. https://doi.org/10.1084/jem.188.12.2301
  6. Muroyama Y, Wherry EJ. Memory T-cell heterogeneity and terminology. Cold Spring Harb Perspect Biol 2021;13:a037929.
  7. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, Almeida JR, Gostick E, Yu Z, Carpenito C, et al. A human memory T cell subset with stem cell-like properties. Nat Med 2011;17:1290-1297. https://doi.org/10.1038/nm.2446
  8. Cho JH, Sprent J. TCR tuning of T cell subsets. Immunol Rev 2018;283:129-137. https://doi.org/10.1111/imr.12646
  9. This S, Rogers D, Mallet Gauthier E, Mandl JN, Melichar HJ. What's self got to do with it: sources of heterogeneity among naive T cells. Semin Immunol 2023;65:101702.
  10. Sood A, Lebel ME, Dong M, Fournier M, Vobecky SJ, Haddad E, Delisle JS, Mandl JN, Vrisekoop N, Melichar HJ. CD5 levels define functionally heterogeneous populations of naive human CD4+ T cells. Eur J Immunol 2021;51:1365-1376. https://doi.org/10.1002/eji.202048788
  11. Lee JY, Kim J, Yi J, Kim D, Kim HO, Han D, Sprent J, Lee YJ, Surh CD, Cho JH. Phenotypic and functional changes of peripheral Ly6C+ T regulatory cells driven by conventional effector T cells. Front Immunol 2018;9:437.
  12. Lee SW, Lee GW, Kim HO, Cho JH. Shaping heterogeneity of naive CD8+ T cell pools. Immune Netw 2023;23:e2.
  13. Richard AC. Divide and conquer: phenotypic and temporal heterogeneity within CD8+ T cell responses. Front Immunol 2022;13:949423.
  14. Lee GW, Lee SW, Kim J, Ju YJ, Kim HO, Yun CH, Cho JH. Supraphysiological levels of IL-2 in Jak3-deficient mice promote strong proliferative responses of adoptively transferred naive CD8+ T cells. Front Immunol 2021;11:616898.
  15. Ju YJ, Lee SW, Kye YC, Lee GW, Kim HO, Yun CH, Cho JH. Self-reactivity controls functional diversity of naive CD8+ T cells by co-opting tonic type I interferon. Nat Commun 2021;12:6059.
  16. Cho JH, Kim HO, Kim KS, Yang DH, Surh CD, Sprent J. Unique features of naive CD8+ T cell activation by IL-2. J Immunol 2013;191:5559-5573. https://doi.org/10.4049/jimmunol.1302293
  17. Cho JH, Kim HO, Surh CD, Sprent J. T cell receptor-dependent regulation of lipid rafts controls naive CD8+ T cell homeostasis. Immunity 2010;32:214-226. https://doi.org/10.1016/j.immuni.2009.11.014
  18. Choi YJ, Lee H, Kim JH, Kim SY, Koh JY, Sa M, Park SH, Shin EC. CD5 suppresses IL-15-induced proliferation of human memory CD8+ T cells by inhibiting mTOR pathways. J Immunol 2022;209:1108-1117. https://doi.org/10.4049/jimmunol.2100854
  19. Herndler-Brandstetter D, Brunner S, Weiskopf D, van Rijn R, Landgraf K, Dejaco C, Duftner C, Schirmer M, Kloss F, Gassner R, et al. Post-thymic regulation of CD5 levels in human memory T cells is inversely associated with the strength of responsiveness to interleukin-15. Hum Immunol 2011;72:627-631. https://doi.org/10.1016/j.humimm.2011.03.028
  20. Tabbekh M, Mokrani-Hammani M, Bismuth G, Mami-Chouaib F. T-cell modulatory properties of CD5 and its role in antitumor immune responses. OncoImmunology 2013;2:e22841.
  21. Lydyard PM, Jamin C, Youinou PY. CD5. In: Encyclopedia of Immunology. 2nd ed. Delves PJ, ed. Oxford; Elsevier; 1998. p.472-475.
  22. Woodland DL, Dutton RW. Heterogeneity of CD4+ and CD8+ T cells. Curr Opin Immunol 2003;15:336-342. https://doi.org/10.1016/S0952-7915(03)00037-2
  23. Kaech SM, Wherry EJ. Heterogeneity and cell-fate decisions in effector and memory CD8+ T cell differentiation during viral infection. Immunity 2007;27:393-405. https://doi.org/10.1016/j.immuni.2007.08.007
  24. Joshi NS, Kaech SM. Effector CD8 T cell development: a balancing act between memory cell potential and terminal differentiation. J Immunol 2008;180:1309-1315. https://doi.org/10.4049/jimmunol.180.3.1309
  25. Henson SM, Akbar AN. KLRG1--more than a marker for T cell senescence. Age (Dordr) 2009;31:285-291. https://doi.org/10.1007/s11357-009-9100-9
  26. Zhao B, Zhao H, Zhao J. Efficacy of PD-1/PD-L1 blockade monotherapy in clinical trials. Ther Adv Med Oncol 2020;12:1758835920937612.
  27. Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol 2018;8:86.
  28. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Welling TH 3rd, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an openlabel, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017;389:2492-2502. https://doi.org/10.1016/S0140-6736(17)31046-2
  29. Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, Verslype C, Zagonel V, Fartoux L, Vogel A, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol 2018;19:940-952. https://doi.org/10.1016/S1470-2045(18)30351-6
  30. Chung JH, Ha JS, Choi J, Kwon SM, Yun MS, Kim T, Jeon D, Yoon SH, Kim YS. Granzyme B for predicting the durable clinical benefit of anti-PD-1/PD-L1 immunotherapy in patients with non-small cell lung cancer. Transl Cancer Res 2022;11:316-326. https://doi.org/10.21037/tcr-21-2506
  31. Jansen CS, Prokhnevska N, Master VA, Sanda MG, Carlisle JW, Bilen MA, Cardenas M, Wilkinson S, Lake R, Sowalsky AG, et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature 2019;576:465-470. https://doi.org/10.1038/s41586-019-1836-5
  32. Brummelman J, Mazza EM, Alvisi G, Colombo FS, Grilli A, Mikulak J, Mavilio D, Alloisio M, Ferrari F, Lopci E, et al. High-dimensional single cell analysis identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors. J Exp Med 2018;215:2520-2535. https://doi.org/10.1084/jem.20180684
  33. Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW, Lieb DJ, Chen JH, Frederick DT, Barzily-Rokni M, et al. Defining t cell states associated with response to checkpoint immunotherapy in melanoma. Cell 2018;175:998-1013.e20. https://doi.org/10.1016/j.cell.2018.10.038
  34. Siddiqui I, Schaeuble K, Chennupati V, Fuertes Marraco SA, Calderon-Copete S, Pais Ferreira D, Carmona SJ, Scarpellino L, Gfeller D, Pradervand S, et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 2019;50:195-211.e10. https://doi.org/10.1016/j.immuni.2018.12.021
  35. Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, Yates KB, Lako A, Felt K, Naik GS, et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol 2019;20:326-336. https://doi.org/10.1038/s41590-019-0312-6
  36. White JT, Cross EW, Burchill MA, Danhorn T, McCarter MD, Rosen HR, O'Connor B, Kedl RM. Virtual memory T cells develop and mediate bystander protective immunity in an IL-15-dependent manner. Nat Commun 2016;7:11291.
  37. White JT, Cross EW, Kedl RM. Antigen-inexperienced memory CD8+ T cells: where they come from and why we need them. Nat Rev Immunol 2017;17:391-400. https://doi.org/10.1038/nri.2017.34
  38. Cho JH, Kim HO, Ju YJ, Kye YC, Lee GW, Lee SW, Yun CH, Bottini N, Webster K, Goodnow CC, et al. CD45-mediated control of TCR tuning in naive and memory CD8+ T cells. Nat Commun 2016;7:13373.
  39. Alotaibi F, Rytelewski M, Figueredo R, Zareardalan R, Zhang M, Ferguson PJ, Maleki Vareki S, Najajreh Y, El-Hajjar M, Zheng X, et al. CD5 blockade enhances ex vivo CD8+ T cell activation and tumour cell cytotoxicity. Eur J Immunol 2020;50:695-704. https://doi.org/10.1002/eji.201948309
  40. Alizadeh D, Wong RA, Yang X, Wang D, Pecoraro JR, Kuo CF, Aguilar B, Qi Y, Ann DK, Starr R, et al. IL15 enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. Cancer Immunol Res 2019;7:759-772. https://doi.org/10.1158/2326-6066.CIR-18-0466
  41. Li Y, Wu D, Yang X, Zhou S. Immunotherapeutic potential of T memory stem cells. Front Oncol 2021;11:723888.
  42. Kallies A, Zehn D, Utzschneider DT. Precursor exhausted T cells: key to successful immunotherapy? Nat Rev Immunol 2020;20:128-136. https://doi.org/10.1038/s41577-019-0223-7
  43. Utzschneider DT, Charmoy M, Chennupati V, Pousse L, Ferreira DP, Calderon-Copete S, Danilo M, Alfei F, Hofmann M, Wieland D, et al. T cell factor 1-expressing memory-like CD8+ T cells sustain the immune response to chronic viral infections. Immunity 2016;45:415-427. https://doi.org/10.1016/j.immuni.2016.07.021
  44. Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC, Shan Q, Hale JS, Lee J, Nasti TH, et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 2016;537:417-421. https://doi.org/10.1038/nature19330
  45. He R, Hou S, Liu C, Zhang A, Bai Q, Han M, Yang Y, Wei G, Shen T, Yang X, et al. Follicular CXCR5-expressing CD8+ T cells curtail chronic viral infection. Nature 2016;537:412-428. https://doi.org/10.1038/nature19317
  46. Zehn D, Thimme R, Lugli E, de Almeida GP, Oxenius A. 'Stem-like' precursors are the fount to sustain persistent CD8+ T cell responses. Nat Immunol 2022;23:836-847. https://doi.org/10.1038/s41590-022-01219-w
  47. Liu C, Jing W, An N, Li A, Yan W, Zhu H, Yu J. Prognostic significance of peripheral CD8+CD28+ and CD8+CD28- T cells in advanced non-small cell lung cancer patients treated with chemo(radio)therapy. J Transl Med 2019;17:344.
  48. Kim KH, Kim HK, Kim HD, Kim CG, Lee H, Han JW, Choi SJ, Jeong S, Jeon M, Kim H, et al. PD-1 blockade-unresponsive human tumor-infiltrating CD8+ T cells are marked by loss of CD28 expression and rescued by IL-15. Cell Mol Immunol 2021;18:385-397. https://doi.org/10.1038/s41423-020-0427-6
  49. Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S, Xu W, Harmon S, Giles JR, Wenz B, et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 2017;545:60-65. https://doi.org/10.1038/nature22079
  50. Fehlings M, Jhunjhunwala S, Kowanetz M, O'Gorman WE, Hegde PS, Sumatoh H, Lee BH, Nardin A, Becht E, Flynn S, et al. Late-differentiated effector neoantigen-specific CD8+ T cells are enriched in peripheral blood of non-small cell lung carcinoma patients responding to atezolizumab treatment. J Immunother Cancer 2019;7:249.
  51. Yost KE, Satpathy AT, Wells DK, Qi Y, Wang C, Kageyama R, McNamara KL, Granja JM, Sarin KY, Brown RA, et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat Med 2019;25:1251-1259. https://doi.org/10.1038/s41591-019-0522-3
  52. Lee SW, Choi HY, Lee GW, Kim T, Cho HJ, Oh IJ, Song SY, Yang DH, Cho JH. CD8+ TILs in NSCLC differentiate into TEMRA via a bifurcated trajectory: deciphering immunogenicity of tumor antigens. J Immunother Cancer 2021;9:e002709.
  53. Kamphorst AO, Pillai RN, Yang S, Nasti TH, Akondy RS, Wieland A, Sica GL, Yu K, Koenig L, Patel NT, et al. Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc Natl Acad Sci U S A 2017;114:4993-4998. https://doi.org/10.1073/pnas.1705327114