Browse > Article
http://dx.doi.org/10.4110/in.2014.14.4.207

Enhancing T Cell Immune Responses by B Cell-based Therapeutic Vaccine Against Chronic Virus Infection  

Kim, Min Ki (System Immunology Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
Lee, Ara (System Immunology Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
Hwang, Yu Kyeong (Cell Therapy Team, Mogam Biotechnology Institute)
Kang, Chang-Yuil (College of Pharmacy, Seoul National University)
Ha, Sang-Jun (System Immunology Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
Publication Information
IMMUNE NETWORK / v.14, no.4, 2014 , pp. 207-218 More about this Journal
Abstract
Chronic virus infection leads to the functional impairment of dendritic cells (DCs) as well as T cells, limiting the clinical usefulness of DC-based therapeutic vaccine against chronic virus infection. Meanwhile, B cells have been known to maintain the ability to differentiate plasma cells producing antibodies even during chronic virus infection. Previously, ${\alpha}$-galactosylceramide (${\alpha}GC$) and cognate peptide-loaded B cells were comparable to DCs in priming peptide-specific $CD8^+$ T cells as antigen presenting cells (APCs). Here, we investigated whether B cells activated by ${\alpha}GC$ can improve virus-specific T cell immune responses instead of DCs during chronic virus infection. We found that comparable to B cells isolated from naïve mice, chronic B cells isolated from chronically infected mice with lymphocytic choriomeningitis virus (LCMV) clone 13 (CL13) after ${\alpha}GC$-loading could activate CD1d-restricted invariant natural killer T (iNKT) cells to produce effector cytokines and upregulate co-stimulatory molecules in both naïve and chronically infected mice. Similar to naïve B cells, chronic B cells efficiently primed LCMV glycoprotein (GP) 33-41-specific P14 $CD8^+$ T cells in vivo, thereby allowing the proliferation of functional $CD8^+$ T cells. Importantly, when ${\alpha}GC$ and cognate epitope-loaded chronic B cells were transferred into chronically infected mice, the mice showed a significant increase in the population of epitope-specific $CD8^+$ T cells and the accelerated control of viremia. Therefore, our studies demonstrate that reciprocal activation between ${\alpha}GC$-loaded chronic B cells and iNKT cells can strengthen virus-specific T cell immune responses, providing an effective regimen of autologous B cell-based therapeutic vaccine to treat chronic virus infection.
Keywords
Chronic virus infection; B-cell based therapeutic vaccine; ${\alpha}$-galactosylceramide; T cell immune responses;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bendelac, A., P. B. Savage, and L. Teyton. 2007. The biology of NKT cells. Annu. Rev. Immunol. 25: 297-336.   DOI   ScienceOn
2 Fuchs, E. J., and P. Matzinger. 1992. B cells turn off virgin but not memory T cells. Science 258: 1156-1159.   DOI
3 Schultze, J. L., S. Michalak, M. J. Seamon, G. Dranoff, K. Jung, J. Daley, J. C. Delgado, J. G. Gribben, and L. M. Nadler. 1997. CD40-activated human B cells: an alternative source of highly efficient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy. J. Clin. Iinvest. 100: 2757-2765.   DOI   ScienceOn
4 Coughlin, C. M., B. A. Vance, S. A. Grupp, and R. H. Vonderheide. 2004. RNA-transfected CD40-activated B cells induce functional T-cell responses against viral and tumor antigen targets: implications for pediatric immunotherapy. Blood 103: 2046-2054.   DOI   ScienceOn
5 Lapointe, R., A. Bellemare-Pelletier, F. Housseau, J. Thibodeau, and P. Hwu. 2003. CD40-stimulated B lymphocytes pulsed with tumor antigens are effective antigen-presenting cells that can generate specific T cells. Cancer Res. 63: 2836-2843.
6 Godfrey, D. I., S. Stankovic, and A. G. Baxter. 2010. Raising the NKT cell family. Nat. Immunol. 11: 197-206.   DOI   ScienceOn
7 Godfrey, D. I., and M. Kronenberg. 2004. Going both ways: immune regulation via CD1d-dependent NKT cells. J. Clin. Invest. 114: 1379-1388.   DOI
8 Kronenberg, M. 2005. Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol. 23: 877-900.   DOI   ScienceOn
9 Park, S. H., and A. Bendelac. 2000. CD1-restricted T-cell responses and microbial infection. Nature 406: 788-792.   DOI   ScienceOn
10 Chung, Y., B. S. Kim, Y. J. Kim, H. J. Ko, S. Y. Ko, D. H. Kim, and C. Y. Kang. 2006. CD1d-restricted T cells license B cells to generate long-lasting cytotoxic antitumor immunity in vivo. Cancer Res. 66: 6843-6850.   DOI   ScienceOn
11 Kim, Y. J., H. J. Ko, Y. S. Kim, D. H. Kim, S. Kang, J. M. Kim, Y. Chung, and C. Y. Kang. 2008. alpha-Galactosylceramide-loaded, antigen-expressing B cells prime a wide spectrum of antitumor immunity. Int. J. Cancer 122: 2774-2783.   DOI   ScienceOn
12 Hermans, I. F., J. D. Silk, U. Gileadi, M. Salio, B. Mathew, G. Ritter, R. Schmidt, A. L. Harris, L. Old, and V. Cerundolo. 2003. NKT cells enhance $CD4^+$ and $CD8^+$ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J. Immunol. 171: 5140-5147.   DOI
13 Stober, D., I. Jomantaite, R. Schirmbeck, and J. Reimann. 2003. NKT cells provide help for dendritic cell-dependent priming of MHC class I-restricted $CD8^+$ T cells in vivo. J. Immunol. 170: 2540-2548.   DOI
14 Wherry, E. J., J. N. Blattman, K. Murali-Krishna, R. van der Most, and R. Ahmed. 2003. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol. 77: 4911-4927.   DOI
15 Cerundolo, V., J. D. Silk, S. H. Masri, and M. Salio. 2009. Harnessing invariant NKT cells in vaccination strategies. Nat. Rev. Immunol. 9: 28-38.   DOI   ScienceOn
16 Ha, S. J., S. N. Mueller, E. J. Wherry, D. L. Barber, R. D. Aubert, A. H. Sharpe, G. J. Freeman, and R. Ahmed. 2008. Enhancing therapeutic vaccination by blocking PD-1-mediated inhibitory signals during chronic infection. J. Exp. Med. 205: 543-555.   DOI   ScienceOn
17 Zajac, A. J., J. N. Blattman, K. Murali-Krishna, D. J. Sourdive, M. Suresh, J. D. Altman, and R. Ahmed. 1998. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188: 2205-2213.   DOI
18 Ha, S. J., E. E. West, K. Araki, K. A. Smith, and R. Ahmed. 2008. Manipulating both the inhibitory and stimulatory immune system towards the success of therapeutic vaccination against chronic viral infections. Immunol. Rev. 223: 317-333.   DOI   ScienceOn
19 Virgin, H. W., E. J. Wherry, and R. Ahmed. 2009. Redefining chronic viral infection. Cell 138: 30-50.   DOI   ScienceOn
20 Jin, H. T., Y. H. Jeong, H. J. Park, and S. J. Ha. 2011. Mechanism of T cell exhaustion in a chronic environment. BMB Rep. 44: 217-231.   DOI   ScienceOn
21 Ng, C. T., L. M. Snell, D. G. Brooks, and M. B. Oldstone. 2013. Networking at the level of host immunity: immune cell interactions during persistent viral infections. Cell Host Microbe 13: 652-664.   DOI   ScienceOn
22 Fahey, L. M., E. B. Wilson, H. Elsaesser, C. D. Fistonich, D. B. McGavern, and D. G. Brooks. 2011. Viral persistence redirects CD4 T cell differentiation toward T follicular helper cells. J. Exp. Med. 208: 987-999.   DOI   ScienceOn
23 Rosenberg, S. A., J. C. Yang, and N. P. Restifo. 2004. Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10: 909-915.   DOI   ScienceOn
24 Schultze, J. L., S. Grabbe, and M. S. von Bergwelt-Baildon. 2004. DCs and CD40-activated B cells: current and future avenues to cellular cancer immunotherapy. Trends Immunol. 25: 659-664.   DOI   ScienceOn
25 Figdor, C. G., I. J. de Vries, W. J. Lesterhuis, and C. J. Melief. 2004. Dendritic cell immunotherapy: mapping the way. Nat. Med. 10: 475-480.   DOI   ScienceOn
26 Janikashvili, N., N. Larmonier, and E. Katsanis. 2010. Personalized dendritic cell-based tumor immunotherapy. Immunotherapy 2: 57-68.   DOI
27 King, C. C., R. de Fries, S. R. Kolhekar, and R. Ahmed. 1990. In vivo selection of lymphocyte-tropic and macrophage-tropic variants of lymphocytic choriomeningitis virus during persistent infection. J. Virol. 64: 5611-5616.
28 Eynon, E. E., and D. C. Parker. 1992. Small B cells as antigen-presenting cells in the induction of tolerance to soluble protein antigens. J. Exp. Med. 175: 131-138.   DOI   ScienceOn
29 Barber, D. L., E. J. Wherry, D. Masopust, B. Zhu, J. P. Allison, A. H. Sharpe, G. J. Freeman, and R. Ahmed. 2006. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439: 682-687.   DOI   ScienceOn
30 Elsaesser, H., K. Sauer, and D. G. Brooks. 2009. IL-21 is required to control chronic viral infection. Science 324: 1569-1572.   DOI   ScienceOn
31 Frohlich, A., J. Kisielow, I. Schmitz, S. Freigang, A. T. Shamshiev, J. Weber, B. J. Marsland, A. Oxenius, and M. Kopf. 2009. IL-21R on T cells is critical for sustained functionality and control of chronic viral infection. Science 324: 1576-1580.   DOI   ScienceOn
32 Yi, J. S., M. Du, and A. J. Zajac. 2009. A vital role for interleukin-21 in the control of a chronic viral infection. Science 324: 1572-1576.   DOI   ScienceOn
33 Linterman, M. A., L. Beaton, D. Yu, R. R. Ramiscal, M. Srivastava, J. J. Hogan, N. K. Verma, M. J. Smyth, R. J. Rigby, and C. G. Vinuesa. 2010. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J. Exp. Med. 207: 353-363.   DOI   ScienceOn
34 Wiesner, M., C. Zentz, C. Mayr, R. Wimmer, W. Hammerschmidt, R. Zeidler, and A. Moosmann. 2008. Conditional immortalization of human B cells by CD40 ligation. PLoS One 3: e1464.   DOI   ScienceOn
35 Zotos, D., J. M. Coquet, Y. Zhang, A. Light, K. D'Costa, A. Kallies, L. M. Corcoran, D. I. Godfrey, K. M. Toellner, M. J. Smyth, S. L. Nutt, and D. M. Tarlinton. 2010. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J. Exp. Med. 207: 365-378.   DOI   ScienceOn
36 Sharpe, A. H., and G. J. Freeman. 2002. The B7-CD28 superfamily. Nat. Rev. Immunol. 2: 116-126.   DOI   ScienceOn
37 Wherry, E. J., S. J. Ha, S. M. Kaech, W. N. Haining, S. Sarkar, V. Kalia, S. Subramaniam, J. N. Blattman, D. L. Barber, and R. Ahmed. 2007. Molecular signature of $CD8^+$ T cell exhaustion during chronic viral infection. Immunity 27: 670-684.   DOI   ScienceOn