DOI QR코드

DOI QR Code

Enhancing T Cell Immune Responses by B Cell-based Therapeutic Vaccine Against Chronic Virus Infection

  • Kim, Min Ki (System Immunology Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Lee, Ara (System Immunology Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Hwang, Yu Kyeong (Cell Therapy Team, Mogam Biotechnology Institute) ;
  • Kang, Chang-Yuil (College of Pharmacy, Seoul National University) ;
  • Ha, Sang-Jun (System Immunology Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
  • Received : 2014.07.06
  • Accepted : 2014.08.05
  • Published : 2014.08.31

Abstract

Chronic virus infection leads to the functional impairment of dendritic cells (DCs) as well as T cells, limiting the clinical usefulness of DC-based therapeutic vaccine against chronic virus infection. Meanwhile, B cells have been known to maintain the ability to differentiate plasma cells producing antibodies even during chronic virus infection. Previously, ${\alpha}$-galactosylceramide (${\alpha}GC$) and cognate peptide-loaded B cells were comparable to DCs in priming peptide-specific $CD8^+$ T cells as antigen presenting cells (APCs). Here, we investigated whether B cells activated by ${\alpha}GC$ can improve virus-specific T cell immune responses instead of DCs during chronic virus infection. We found that comparable to B cells isolated from naïve mice, chronic B cells isolated from chronically infected mice with lymphocytic choriomeningitis virus (LCMV) clone 13 (CL13) after ${\alpha}GC$-loading could activate CD1d-restricted invariant natural killer T (iNKT) cells to produce effector cytokines and upregulate co-stimulatory molecules in both naïve and chronically infected mice. Similar to naïve B cells, chronic B cells efficiently primed LCMV glycoprotein (GP) 33-41-specific P14 $CD8^+$ T cells in vivo, thereby allowing the proliferation of functional $CD8^+$ T cells. Importantly, when ${\alpha}GC$ and cognate epitope-loaded chronic B cells were transferred into chronically infected mice, the mice showed a significant increase in the population of epitope-specific $CD8^+$ T cells and the accelerated control of viremia. Therefore, our studies demonstrate that reciprocal activation between ${\alpha}GC$-loaded chronic B cells and iNKT cells can strengthen virus-specific T cell immune responses, providing an effective regimen of autologous B cell-based therapeutic vaccine to treat chronic virus infection.

Keywords

References

  1. Wherry, E. J., J. N. Blattman, K. Murali-Krishna, R. van der Most, and R. Ahmed. 2003. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol. 77: 4911-4927. https://doi.org/10.1128/JVI.77.8.4911-4927.2003
  2. Ha, S. J., E. E. West, K. Araki, K. A. Smith, and R. Ahmed. 2008. Manipulating both the inhibitory and stimulatory immune system towards the success of therapeutic vaccination against chronic viral infections. Immunol. Rev. 223: 317-333. https://doi.org/10.1111/j.1600-065X.2008.00638.x
  3. Virgin, H. W., E. J. Wherry, and R. Ahmed. 2009. Redefining chronic viral infection. Cell 138: 30-50. https://doi.org/10.1016/j.cell.2009.06.036
  4. Zajac, A. J., J. N. Blattman, K. Murali-Krishna, D. J. Sourdive, M. Suresh, J. D. Altman, and R. Ahmed. 1998. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188: 2205-2213. https://doi.org/10.1084/jem.188.12.2205
  5. Jin, H. T., Y. H. Jeong, H. J. Park, and S. J. Ha. 2011. Mechanism of T cell exhaustion in a chronic environment. BMB Rep. 44: 217-231. https://doi.org/10.5483/BMBRep.2011.44.4.217
  6. Ng, C. T., L. M. Snell, D. G. Brooks, and M. B. Oldstone. 2013. Networking at the level of host immunity: immune cell interactions during persistent viral infections. Cell Host Microbe 13: 652-664. https://doi.org/10.1016/j.chom.2013.05.014
  7. Fahey, L. M., E. B. Wilson, H. Elsaesser, C. D. Fistonich, D. B. McGavern, and D. G. Brooks. 2011. Viral persistence redirects CD4 T cell differentiation toward T follicular helper cells. J. Exp. Med. 208: 987-999. https://doi.org/10.1084/jem.20101773
  8. Rosenberg, S. A., J. C. Yang, and N. P. Restifo. 2004. Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10: 909-915. https://doi.org/10.1038/nm1100
  9. Figdor, C. G., I. J. de Vries, W. J. Lesterhuis, and C. J. Melief. 2004. Dendritic cell immunotherapy: mapping the way. Nat. Med. 10: 475-480. https://doi.org/10.1038/nm1039
  10. Janikashvili, N., N. Larmonier, and E. Katsanis. 2010. Personalized dendritic cell-based tumor immunotherapy. Immunotherapy 2: 57-68. https://doi.org/10.2217/imt.09.78
  11. Schultze, J. L., S. Grabbe, and M. S. von Bergwelt-Baildon. 2004. DCs and CD40-activated B cells: current and future avenues to cellular cancer immunotherapy. Trends Immunol. 25: 659-664. https://doi.org/10.1016/j.it.2004.09.016
  12. Eynon, E. E., and D. C. Parker. 1992. Small B cells as antigen-presenting cells in the induction of tolerance to soluble protein antigens. J. Exp. Med. 175: 131-138. https://doi.org/10.1084/jem.175.1.131
  13. Fuchs, E. J., and P. Matzinger. 1992. B cells turn off virgin but not memory T cells. Science 258: 1156-1159. https://doi.org/10.1126/science.1439825
  14. Schultze, J. L., S. Michalak, M. J. Seamon, G. Dranoff, K. Jung, J. Daley, J. C. Delgado, J. G. Gribben, and L. M. Nadler. 1997. CD40-activated human B cells: an alternative source of highly efficient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy. J. Clin. Iinvest. 100: 2757-2765. https://doi.org/10.1172/JCI119822
  15. Coughlin, C. M., B. A. Vance, S. A. Grupp, and R. H. Vonderheide. 2004. RNA-transfected CD40-activated B cells induce functional T-cell responses against viral and tumor antigen targets: implications for pediatric immunotherapy. Blood 103: 2046-2054. https://doi.org/10.1182/blood-2003-07-2379
  16. Lapointe, R., A. Bellemare-Pelletier, F. Housseau, J. Thibodeau, and P. Hwu. 2003. CD40-stimulated B lymphocytes pulsed with tumor antigens are effective antigen-presenting cells that can generate specific T cells. Cancer Res. 63: 2836-2843.
  17. Bendelac, A., P. B. Savage, and L. Teyton. 2007. The biology of NKT cells. Annu. Rev. Immunol. 25: 297-336. https://doi.org/10.1146/annurev.immunol.25.022106.141711
  18. Godfrey, D. I., S. Stankovic, and A. G. Baxter. 2010. Raising the NKT cell family. Nat. Immunol. 11: 197-206. https://doi.org/10.1038/ni.1841
  19. Kronenberg, M. 2005. Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol. 23: 877-900. https://doi.org/10.1146/annurev.immunol.23.021704.115742
  20. Park, S. H., and A. Bendelac. 2000. CD1-restricted T-cell responses and microbial infection. Nature 406: 788-792. https://doi.org/10.1038/35021233
  21. Chung, Y., B. S. Kim, Y. J. Kim, H. J. Ko, S. Y. Ko, D. H. Kim, and C. Y. Kang. 2006. CD1d-restricted T cells license B cells to generate long-lasting cytotoxic antitumor immunity in vivo. Cancer Res. 66: 6843-6850. https://doi.org/10.1158/0008-5472.CAN-06-0889
  22. Godfrey, D. I., and M. Kronenberg. 2004. Going both ways: immune regulation via CD1d-dependent NKT cells. J. Clin. Invest. 114: 1379-1388. https://doi.org/10.1172/JCI200423594
  23. Kim, Y. J., H. J. Ko, Y. S. Kim, D. H. Kim, S. Kang, J. M. Kim, Y. Chung, and C. Y. Kang. 2008. alpha-Galactosylceramide-loaded, antigen-expressing B cells prime a wide spectrum of antitumor immunity. Int. J. Cancer 122: 2774-2783. https://doi.org/10.1002/ijc.23444
  24. Hermans, I. F., J. D. Silk, U. Gileadi, M. Salio, B. Mathew, G. Ritter, R. Schmidt, A. L. Harris, L. Old, and V. Cerundolo. 2003. NKT cells enhance $CD4^+$ and $CD8^+$ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J. Immunol. 171: 5140-5147. https://doi.org/10.4049/jimmunol.171.10.5140
  25. Stober, D., I. Jomantaite, R. Schirmbeck, and J. Reimann. 2003. NKT cells provide help for dendritic cell-dependent priming of MHC class I-restricted $CD8^+$ T cells in vivo. J. Immunol. 170: 2540-2548. https://doi.org/10.4049/jimmunol.170.5.2540
  26. Cerundolo, V., J. D. Silk, S. H. Masri, and M. Salio. 2009. Harnessing invariant NKT cells in vaccination strategies. Nat. Rev. Immunol. 9: 28-38. https://doi.org/10.1038/nri2451
  27. Ha, S. J., S. N. Mueller, E. J. Wherry, D. L. Barber, R. D. Aubert, A. H. Sharpe, G. J. Freeman, and R. Ahmed. 2008. Enhancing therapeutic vaccination by blocking PD-1-mediated inhibitory signals during chronic infection. J. Exp. Med. 205: 543-555. https://doi.org/10.1084/jem.20071949
  28. Barber, D. L., E. J. Wherry, D. Masopust, B. Zhu, J. P. Allison, A. H. Sharpe, G. J. Freeman, and R. Ahmed. 2006. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439: 682-687. https://doi.org/10.1038/nature04444
  29. King, C. C., R. de Fries, S. R. Kolhekar, and R. Ahmed. 1990. In vivo selection of lymphocyte-tropic and macrophage-tropic variants of lymphocytic choriomeningitis virus during persistent infection. J. Virol. 64: 5611-5616.
  30. Elsaesser, H., K. Sauer, and D. G. Brooks. 2009. IL-21 is required to control chronic viral infection. Science 324: 1569-1572. https://doi.org/10.1126/science.1174182
  31. Frohlich, A., J. Kisielow, I. Schmitz, S. Freigang, A. T. Shamshiev, J. Weber, B. J. Marsland, A. Oxenius, and M. Kopf. 2009. IL-21R on T cells is critical for sustained functionality and control of chronic viral infection. Science 324: 1576-1580. https://doi.org/10.1126/science.1172815
  32. Yi, J. S., M. Du, and A. J. Zajac. 2009. A vital role for interleukin-21 in the control of a chronic viral infection. Science 324: 1572-1576. https://doi.org/10.1126/science.1175194
  33. Linterman, M. A., L. Beaton, D. Yu, R. R. Ramiscal, M. Srivastava, J. J. Hogan, N. K. Verma, M. J. Smyth, R. J. Rigby, and C. G. Vinuesa. 2010. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J. Exp. Med. 207: 353-363. https://doi.org/10.1084/jem.20091738
  34. Zotos, D., J. M. Coquet, Y. Zhang, A. Light, K. D'Costa, A. Kallies, L. M. Corcoran, D. I. Godfrey, K. M. Toellner, M. J. Smyth, S. L. Nutt, and D. M. Tarlinton. 2010. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J. Exp. Med. 207: 365-378. https://doi.org/10.1084/jem.20091777
  35. Sharpe, A. H., and G. J. Freeman. 2002. The B7-CD28 superfamily. Nat. Rev. Immunol. 2: 116-126. https://doi.org/10.1038/nri727
  36. Wherry, E. J., S. J. Ha, S. M. Kaech, W. N. Haining, S. Sarkar, V. Kalia, S. Subramaniam, J. N. Blattman, D. L. Barber, and R. Ahmed. 2007. Molecular signature of $CD8^+$ T cell exhaustion during chronic viral infection. Immunity 27: 670-684. https://doi.org/10.1016/j.immuni.2007.09.006
  37. Wiesner, M., C. Zentz, C. Mayr, R. Wimmer, W. Hammerschmidt, R. Zeidler, and A. Moosmann. 2008. Conditional immortalization of human B cells by CD40 ligation. PLoS One 3: e1464. https://doi.org/10.1371/journal.pone.0001464