• 제목/요약/키워드: effective Plastic strain

검색결과 166건 처리시간 0.022초

압축 가공된 비용접 배관의 소성변형 거동에 미치는 내압의 영향 (Effect of Inner Pressure on the Plastic Deformation Behavior of Seamless Pipe Deformed by Compression Process)

  • 서위걸;이문수;손수지;최시훈
    • 소성∙가공
    • /
    • 제28권4호
    • /
    • pp.175-182
    • /
    • 2019
  • In this study, compression process is performed on the seamless E235 pipe using the newly developed compression technology for seamless pipe. Experimental analysis on the heterogeneity of microstructures and mechanical properties of the deformed seamless pipe is conducted. As a result, the correlation between microstructures and mechanical properties are determined. The spatial distribution of effective stress and effective strain developed in the seamless pipe deformed through compression is analyzed using the finite element method (FEM) based on different inner pressure conditions. From the results of the FEM, the impact of the inner pressure on effective stress and effective strain of the seamless pipe deformed through compression can be understood theoretically.

열역학 기반 내부 변수를 이용한 균질화 탄소성 구성방정식 및 입자강화 복합재에서의 소성변형집중 (Homogenized Elastic-plastic Relation based on Thermodynamics and Strain Localization Analyses for Particulate Composite)

  • 윤수진;김기근
    • 소성∙가공
    • /
    • 제33권1호
    • /
    • pp.18-35
    • /
    • 2024
  • In the present work, the evolution rules for the internal variables including continuum damage factors are obtained using the thermodynamic framework, which are in turn facilitated to derive the elastic-plastic constitutive relation for the particulate composites. Using the Mori-Tanaka scheme, the homogenization on state and internal variables such as back-stress and damage factors is carried out to procure the rate independent plasticity relations. Moreover, the degradation of mechanical properties of constituents is depicted by the distinctive damages such that the phase and interfacial damages are treated individually accordingly, whereas the kinematic hardening is depicted by combining the Armstrong-Frederick and Phillips' back-stress evolutions. On the other hand, the present constitutive relation for each phase is expressed in terms of the respective damage-free effective quantities, then, followed by transformation into the damage affected overall nominal relations using the aforementioned homogenization concentration factors. An emphasis is placed on the qualitative analyses for strain localization by observing the perturbation growth instead of the conventional bifurcation analyses. It turns out that the proposed constitutive model offers a wide range of strain localization behavior depending on the evolution of various internal variable descriptions.

강소성 유한요소해석에서 Hourglass Control (Hourglass Control in Rigid-Plastic Finite Element Analysis)

  • 강정진;오수익
    • 대한기계학회논문집A
    • /
    • 제20권4호
    • /
    • pp.1290-1300
    • /
    • 1996
  • The finite element method, based on rigid-plastic formulation, is widely used to simulate metal forming processes. In order to improve the computational efficiency of the rigid-plastic FEM, one-point integration is used to evaluate the stiffness matrix with four-node rectangular elements and eight-node brick elements. In order to control the hourglass modes, hourglass strain rate components were introduced and included in the effective strain rate definition, Numerical tests have shown that the proposed one-point integration scheme reduces the stiffness matrix evaluation time without deteriorating the convergence behavior of Newton-Raphson method. Simulations of a ring compression, a plane-strain closed-die forging and the three-dimensional spike forging processes were carried out by using the proposed integration method. The simulation results are compared to those obtained by applying the conventional integraiton method in terms of the solution accuracy and computational efficiency.

최적화기법의 적용을 통한 냉간단조품의 성형공정 평가 (Evaluation of the Forging Process by the Application of Optimization Technology)

  • 여홍태;박건형;허관도
    • 소성∙가공
    • /
    • 제15권3호
    • /
    • pp.226-231
    • /
    • 2006
  • The fuel injector is a pa.1 that controls the fuel supply of automotive engine. The housing of the fuel injector supports the rod, the needle valve and the solenoid. In this study, the rigid-plastic FE-analysis by using the design of experiments (DOE) and the response surface methodology (RSM) has been performed to produce the product reducing the under-fill and the maximum effective strain. From the results of DOE, the stem of counter punch and the face angle of punch at the $1^{st}$ process, and the stem of punch at the $2^{nd}$ process were determined as the significant design variables far each response such as the upper under-fill, lower under-fill and the maximum effective strain. From the results of RSM, the optimal values of the design variables have been also determined by simultaneously considering the responses.

차량충돌해석 적용을 위한 간단화한 성형이력 고려 방법 (A Simplified Method to Consider Forming Effects in a Car Crash Analysis)

  • 허지향;윤종헌;임지호;박성호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.259-262
    • /
    • 2008
  • This paper introduces a simplified method to consider forming effects in a car crash analysis. Representative value was used to consider forming effects simply. Four representative values, which are the mean value of thicknesses and effective plastic strains at nodes, the median of thicknesses and effective plastic strains at nodes, were evaluated. A crash analysis of a front side member shows that analysis results from the suggested methods are similar to those from the conventional method to consider forming effects. Use of the mean effective plastic strain shows the best results. A car crash analysis for a ULSAB/AVC model under the condition of US SINCAP were carried out to demonstrate the validity of the suggested method. Analysis results show that the error of suggested method is less than 1.5%.

  • PDF

Al-Mg 합금의 고온 소성 변형 특성에 미치는 동적 변형 시효의 영향 (The Effect of Dynamic Strain Aging on the High Temperature Plastic Deformation Behaviour of Al-Mg Alloy)

  • 이상용;이정환
    • 소성∙가공
    • /
    • 제5권4호
    • /
    • pp.327-336
    • /
    • 1996
  • The effect of dynamic strain aging on high temperature deformation behaviour of the A-Mg alloy was investigated by strain rate change tests and stress relaxation tests between 20$0^{\circ}C$and 50$0^{\circ}C$. Yield point, short stress transient and periodic discontinuities on the stress-strain curve were considered as an evidence of the effect of dynamic strain aging. With this criterion two distinct strain rate-temperature regimes could be manifested. Dynamic strain aging was considered to be effective in the high temperature-low strain rate regime, whereas dynamic recovery was a dominant deformation mechanism in the low temperature-high strain rate regime. It was found that dynamic strain aging in the high temperature deformation was governed by the mechcanism of diffusion-controlled, viscous dislocation movement.

  • PDF

탄소성 대변형 거동에서의 손상의 운동학 (The Kinematics of Damage for Elasto-Plastic Large Deformation)

  • 박대효;김기두
    • 한국강구조학회 논문집
    • /
    • 제9권3호통권32호
    • /
    • pp.401-419
    • /
    • 1997
  • 탄소성 대변형에서의 손상의 운동학을 연속체 역학적 구도 안에서 유효 응력의 개념을 통하여 4차 유효 손상 텐사를 이용하여 소개하였다. 손상 변형의 운동학적인 기술의 부재로 인하여 소변형 문제에서는 고체의 손상의 특성을 기술하기 위해서는 다음의 두 가지 가정 (변형률 등가의 가정 또는 에너지 등가의 가정)중의 하나가 일반적으로 채택되어진다. 본 연구에서 제안된 방법은 대변형에 적용될 수 있는 손상 거동의 운동학적인 일반화된 방법을 제공한다. 이 방법은 소 변형률에 국한되는 변형률 등가의 가정이나 에너지 등가의 가정 방식이 아닌 변형장의 운동학을 직접 고려하여 손상 거동의 운동학을 2차 손상 텐사의 함수인 4차 유효 손상 텐사를 이용하여 탄성 및 소성 영역에서 표현하였다.

  • PDF

원전 안전 1등급 기기의 유한요소 탄소성 시간이력 지진해석 결과에 미치는 가속도 가진 방법 내 기준선 조정의 영향에 대한 예비연구 (Preliminary Study on Effect of Baseline Correction in Acceleration Excitation Method on Finite Element Elastic-Plastic Time-History Seismic Analysis Results of Nuclear Safety Class I Components)

  • 김종성;박상혁
    • 한국압력기기공학회 논문집
    • /
    • 제14권2호
    • /
    • pp.69-76
    • /
    • 2018
  • The paper presents preliminary investigation results for the effect of the baseline correction in the acceleration excitation method on finite element seismic analysis results (such as accumulated equivalent plastic strain, equivalent plastic strain considering cyclic plasticity, von Mises effective stress, etc) of nuclear safety Class I components. For investigation, finite element elastic-plastic time-history seismic analysis is performed for a surge line including a pressurizer lower head, a pressurizer surge nozzle, a surge piping, and a hot leg surge nozzle using the Chaboche hardening model. Analysis is performed for various seismic loading methods such as acceleration excitation methods with and without the baseline correction, and a displacement excitation method. Comparing finite element analysis results, the effect of the baseline correction is investigated. As a result of the investigation, it is identified that finite element analysis results using the three methods do not show significant difference.

DEFORM$^{TM}$을 이용한 SKH9 고속도공구강의 경도 예측 (Estimation of Hardness using DEFORM$^{TM}$ in SKH9 High Speed Steel)

  • 박준홍;성장현;김영희;이해우;전언찬;박영철
    • 열처리공학회지
    • /
    • 제20권4호
    • /
    • pp.175-180
    • /
    • 2007
  • The hardness of cold-forged products is in close relationship with its effective strain. This study presented the estimating method of hardness for cold-forged SKH9 products without hardness tests in view of resistance to plastic deformation using finite element code, DEFORM$^{TM}$. The flow stress equation obtained from the compression test was only used as a basic data to estimate the relationship between effective strain and hardness. In addition, this new estimating method was applied to the cold-forged product which was widely used in industrial field to show the feasibility. As a result, the predicted hardness numbers through FE simulation showed good agreement with the measured hardness numbers. It is possible to estimate the hardness not by hardness tests, but by only computer simulations for the deformed products. Also, effective strain values were possibly estimated by measuring hardness numbers, and vice versa.

쇄빙선 강재의 내충격 특성에 관한 실험적 연구: 제1부 강재 특성 (Study on Crashworthiness of Icebreaker Steel: Part I Steel Properties)

  • 노명현;이재익;박성주;정준모
    • 한국해양공학회지
    • /
    • 제30권4호
    • /
    • pp.268-276
    • /
    • 2016
  • This paper presents a study on the crashworthiness of the scaled-down stiffened panels used on a Korean icebreaker. In order to validate the crashworthiness of the panels, this paper provides various mechanical properties such as the results of a CVN test, quasi-static tensile test, and high-speed tensile test at arctic temperatures. Two types of steels (EH32 and FH32) were chosen for the material tests. CVN tests revealed that the two steels were equivalent up to −60℃ in terms of their impact energy absorption capacity. However, the toughness of FH32 was significantly superior to that of EH32. EH32 showed slightly higher flow stresses at all temperature levels compared to FH32. The improvement ratios of the yield strengths, tensile strengths, plastic hardening exponents, etc. for FH32, which were obtained from quasi-static tensile tests, showed an apparent ascending tendency with a decrease in temperature. Dynamic tensile test results were obtained for the two temperatures levels of 20℃ and −60℃ with two plastic strain rate levels of 1 s−1 and 100 s−1. A closed form empirical formula proposed by Choung et al. (2011;2013) was shown to be effective at predicting the flow stress increase due to a strain rate increase.