• Title/Summary/Keyword: effect of fluidity

Search Result 298, Processing Time 0.034 seconds

Fluidity Changes of Cement Paste added Superplasticizer and Inorganic Fine Powders for Cement Admixture (고유동화제와 시멘트 혼화용 무기미분체가 첨가된 시멘트 페이스트의 유동성 변화)

  • 김도수;정흥호;박병배;노재성
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.751-759
    • /
    • 2000
  • Effects of the dosage change, from 0 to 2.0 wt% based on cement weight, of naphthalenic (NSF) and polycarboxylic(NT-2) superplasticizers, on the fluidity of cement paste substituted by 10 wt% II-anhydrite and fly ash respectively as well as II-anhydrite and fly ash itself were investigated. Dispersion properties between particles in suspension were investigated by zeta potential test. Initial fluidity and slump loss in the paste system were observed through mini-slump and apparent viscosity changes with elapsed time. Zeta potential on the particle surface was a tendency to increase according to increasing of NSF dosage. Especially, zeta potential of fly ash has the highest value among all particles equivalent to NSF dosage. In the fluidity of cement paste substituted by inorganic particles, the specimen with substitution of 10 wt% II-anhydrite and fly ash for cement was more effective than cement itself to improve initial fluidity and retain stable fluidity of cement paste. In addition, effect of NT-2 and NSF to improve the fluidity of cement paste, addition of 1.0 wt% NT-2 was more effective than 1.5wt% NSF.

  • PDF

Effect of Powder and Aggregates on Compactability of High Performance Concrete

  • Lee, Seung-Han;Han, Hyung-sub
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.19-28
    • /
    • 1999
  • This study treated self-compacting high Performance concrete as two Phase materials of Paste and aggregates and examined the effect of powder and aggregates on self-compacting high performance, since fluidity and segregation resistance of fresh concrete are changed mainly by paste. To improve the fluidity and self-compactibility of concrete, optimum powder ratio of self-compacting high performance concrete using fly ash and blast-furnace slag as powders were calculated. This study was also designed to provide basic materials for suitable design of mix proportion by evaluating fluidity and compactibility by various volume ratios of fine aggregates, paste, and aggregates. As a result, the more fly ash was replaced, the more confined water ratio was reduced because of higher fluidity. The smallest confined water ratio was determined when 15% blast-furnace slag was replaced. The lowest confined water ratio was acquired when 20% fly ash and 15% blast-furnace slag were replaced together. The optimum fine aggregates ratio with the best compactibility was the fine aggregate ratio with the lowest percentage of void in mixing coarse aggregate and fine aggregate In mixing the high performance concrete. Self-compacting high performance concrete with desirable compactibility required more than minimum of unit volume weight. If the unit volume weight used was less than the minimum, concrete had seriously reduced compactibility.

  • PDF

An Experimental Study on the Effect of Cement and High range water reducing AE agent in Fluidity of High Flowing Concrete (고유동콘크리트의 유동특성에 미치는 시멘트 및 고성능 AE감수제의 효과에 관한 연구)

  • 김규용;반성수;박선규;박유신;신홍철;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.63-68
    • /
    • 1998
  • The fluidity of high flowing concrete can be affected by numerous parameters which characterize either the cement of the admixture. The reactivity of a cement as determined by its chemical composition(especially its $C_3$A content), its fineness and its content in sulfates and alkalies obviously plays a key role in rheology of high flowing concrete in fresh state. Specific properties of high range water reducing AE agent used to enhance the workability of high flowing concrete also exert important influence. The purpose of this experimental study is to investigate and analyze the effect of cement and high range water reducing AE agent in fluidity, setting, compressive strength of high flowing concrete. As a result, we found that fluidity of high flowing concrete is affected greatly by kind of cement and high range water reducing AE agent, also, there is harmonic character between high belite cement and polycarbonic acid high range water reducing AE agent.

  • PDF

An Experimental Study on the Effects of Polycarboxylate Superplasticizer on the Fluidity Properties of Cement Pastes with POFA (POFA를 혼입한 시멘트 페이스트의 유동특성에 폴리카르본산계 감수제가 미치는 영향에 관한 실험적 연구)

  • Wi, Kwang-Woo;Jeong, Seong-Min;Lee, Yun-Su;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.137-138
    • /
    • 2016
  • Palm Oil Fuel Ash(POFA),which is burned in palm oil factories to get energy and gathered, has been studied in many countries due to its chemical properties. However POFA has high value of LOI and lots of pores on its particle surface. Therefore, in this study, POFA's fluidity were confirmed by mini-slump test and plastic viscosity test. Through the results, fluidity of POFA reduced according to the replacement ratio of POFA because of high value of LOI and its pores on surface and plastic viscosity of POFA increased. In addition, when superplasticizer was added, fluidity increased due to the steric effect of polycarboxylate superplasticizer.

  • PDF

Exmination of Rheological Properties on Cement Paste of High-Blaine Blast Furnace Slag Fineness (고미분말 고로슬래그의 치환율 변화에 따른 시멘트 페이스트의 레올로지 성질 검토)

  • Lim, Ji-Hee;Lee, Gun-Cheol;Yoon, Seung-Joe
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.186-187
    • /
    • 2013
  • Recently, high fluidity concrete is becoming more prevalent. High fluidity concrete uses admixture or thickener in order to prevent separation of materials due to increased fluidity, and, especially, BS is becoming more use for reduced heat of hydration and improved long-term strength. This study examined the effect of BS on fluidity of cement paste from a rheological viewpoint. As for BS types, materials equivalent to 1 types of KS F 2563 and the cement mass was substituted by 20, 40, 60, 80%.

  • PDF

The Effect of Ginseng Extracts on the Photooxidation of Liposome II. The effecton the changes of fluidity and lysis (Liposome의 광산화반응에 미치는 인삼추출물의 영향 제2보 유동성 및 Lysis에 미치는 영향)

  • 백태홍;이준홍
    • Journal of Ginseng Research
    • /
    • v.14 no.3
    • /
    • pp.385-390
    • /
    • 1990
  • To investigate the effect of ginseng extracts on the changes of flllidity and lysis of liposome reverse phase evaporation vesicle (REV) was employed as model membrane and methylene blue was used as photosensitizer. Fluoresence polarization (P vaule) that represented fluidity of liposome was increased by photooxidation. All of the ginseng saponin inhibited the increasing rate of P value; the order of effect was ginseng water extract>biol saponin>triol saponin>crude saponin. In trapped G-6-P% measurement for lysis of liposome, ginseng water extract and crude saponin promoted the lysis of liposome. Therefore, we thought that ginseng extracts acted as both antioxidant and detergent.

  • PDF

Experimental Study on the Effect of the Amount of Acrylic Viscosity Agent on the Physical Properties of High-Fluidity Concrete using Low-Binder (아크릴계 증점제 사용량이 저분체 고유동 콘크리트의 물리적 특성에 미치는 영향에 관한 실험적 연구)

  • Ko, Hye-Bin;Kong, Tae-Woong;Cho, In-Sung;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.72-73
    • /
    • 2021
  • For the development of high-fluidity concrete using low-binder, The effect of the use of the developed acrylic viscosity agent on the physical properties of concrete evaluated. The amount acrylic viscosity agent used was 1.5%, 1.7%, and 2.0% based on the binder amount of 400kg/m3, and slump flow test, slump flow 500mm arrival time measurement, air volume measurement, and U-Box passing test were conducted to determine the effect of the physical properties of concrete. it was judged that 1.5% of the acrylic viscosity agent used in high-fluidity concrete using low-binder was most suitable.

  • PDF

Experimental Study on the Effect of the Amount of Cellulose type Viscosity Agent on the Physical Properties of High-Fluidity Concrete Using Low-Binder (셀룰로스계 증점제의 첨가량이 고유동 저분체 콘크리트의 물리적 특성에 미치는 영향에 관한 실험적 연구)

  • Ko, Hye-Bin;Cho, In-Sung;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.129-130
    • /
    • 2021
  • For the development of high-fluidity concrete using low-binder, The effect of the use of the developed acrylic viscosity agent on the physical properties of concrete evaluated. The amount acrylic viscosity agent used was 0.28%, 0.29% and 0.30% based on the binder amount of 350kg/m3, and slump flow test, air volume measurement, U-Box passing test and strength compressive were conducted to determine the effect of the physical properties of concrete. it was judged that 0.29% of the cellulose type viscosity agent used in high-fluidity concrete using low-binder was most suitable.

  • PDF

Effects of Chemical Admixture on the Quality Characteristics of Grout for Prestressed Concrete (화학 혼화제가 PSC용 그라우트 품질 특성에 미치는 영향)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Ahn, Ki-Hong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.68-75
    • /
    • 2017
  • The study investigates the effects of the content and using method of chemical admixtures such as superplasticizer and viscosity modifying admixture on the fluidity, bleeding ratio, volumetric change and compressive strength of the grout in order to provide basic data for the development of high-quality grout for prestressed concrete. It appeared that the combination of superplasticizer and viscosity modifying admixture decreased the fluidity of grout with small content of superplasticizer. On the contrary, Grout used more than 0.1% of superplasticizer appeared to have significant effect on the improvement of the fluidity. On the other hand, bleeding of grout reduced according to increasing the content of viscosity modifying admixture. Superplasticizer with less than 0.05% had practically no effect on the reduction of bleeding, whereas superplasticizer with more than 0.1% appear to have significant effect on the reduction of bleeding. Also the combination of superplasticizer with 0.15% and viscosity modifying admixture with 0.15% resulted in satisfactory fluidity accompanied with fair reduction of bleeding and shrinkage of the grout.

Fluidity of Cement Paste and Fluidity and Compressive Strength of Cement Mortar Substituted by Pozzolanic fine Powders and II-Anhydrite (포졸란계 미분말과 ∥ 형 무수석고 치환 시멘트 페이스트 유동성과 시멘트 모르타르의 유동성 및 압축강도)

  • 노재성;이범재;김도수;이병기
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.3
    • /
    • pp.149-156
    • /
    • 1997
  • In order to improve compressive strength of cement mortar, powder admixture(FAS) was mmufactured by mixing fly ash. Il-anhydite and silica hume, and superplasticizer was used for the control of fluidity reduction with the use of this admixture. Cement was substituted by 10, 20wt% of FAS respectively. At W/S = 0.40, the fluidity of' cement paste substituted by PAS was decreased. NSF and NT-2 were very effective fbr the control of fluidity reduction. As the particle size of U -anhydrite was fine, the fluidity of cement mortar was increased. The fluidity reduction of cement mortar substituted by 10wt% of FAS was controlled. The compressive strength of cement mortar substituted by 10wt% of FAS showed higher. value than that of 20wt%, expecially specimen(C1) substituted by 10wt% of $\gamma$ had the highest compressive strength value.