• Title/Summary/Keyword: edible film

Search Result 75, Processing Time 0.021 seconds

Physical, Mechanical, and Antimicrobial Properties of Edible Film Produced from Defatted Soybean Meal Fermented by Bacillus subtilis

  • KIM HYUNG-WOOK;KO EUN-JUNG;HA SANG-DO;SONG KYUNG-BIN;PARK SANG-KYU;CHUNG DUCK-HWA;YOUNS KWANG-SUP;BAE DONG-HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.815-822
    • /
    • 2005
  • In order to extend the shelf-life of packaged or coated foods, an antibacterial edible film was developed from soybean meal that had been fermented with Bacillus subtilis under the optimum condition of pH 7.0-7.5 and $33^{\circ}C$ for 33 h. The water vapor permeability of the fermented film ($86.0 mg/cm^2{\cdot}h$) was higher than those of normal soybean films ($66.9 mg/cm^2{\cdot}h$). Protein solubility of the fermented film was also higher than ordinary soy protein film at the pH range of 3 -10. The fermented soybean film had higher tensile strength and lower $\%$ elongation (elongation rate) than the ordinary soybean film, mainly because partial hydrolysis of proteins in the soybean film occurred during fermentation. Antimicrobial properties of the fermented film on foodstuffs were measured by placing the films on surime, jerked beef, and mashed sausage media; containing $10^2-10^3$ CFU/plate of foodborne pathogenic bacteria, and showed significantly higher inhibitory effects on the growths of all the indicating bacteria. The film could be used as a packaging material in the food industry. However, before direct application of the fermented film to the commercial food industry, its poor mechanical and antibacterial properties need to be improved.

Development of Hijiki-based Edible Films Using High-pressure Homogenization (고압 균질기를 이용한 가식성 톳 필름 개발)

  • Lee, Han-Na;Min, Sea-Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.162-167
    • /
    • 2012
  • Edible biopolymer films were developed from hijiki ($Hizikia$ $fusiforme$), using a high-pressure homogenization (HPH). Effects of pressure and pass number of HPH on color, tensile, moisture barrier properties, flavor profiles, and microstructure of hijiki films were investigated. A hydrocolloid of hijiki was processed by HPH at 69, 103, or 152 MPa with 1, 2, or 3 passes. A hijiki-base film was formed by drying a film-forming solution which was prepared by mixing of the HPH-processed suspension with glycerol and Polysorbate 20. Tensile strength and elastic modulus increased with increasing HPH pressure. Uniformity of the films increased as the pressure of HPH with 1 pass increased and the number of pass increased at 152 MPa. Water vapor permeability ($2.1-3.3g{\cdot}mm/kPa{\cdot}h{\cdot}m^2$) and water solubility (0.4-1.0%), which are relatively low compared to those of many other edible films, show the potential that hijiki-base films are applied to the range of low to intermediate moisture food as wrapping or coating.

Changes on the Quality of Safflower Seed Products Coated with Edible Films during Storage (가식성 필름 코팅에 따른 홍화씨 가공제품의 품질 변화)

  • Kim Nam-Woo;Ju Eung-Young
    • Food Science and Preservation
    • /
    • v.12 no.1
    • /
    • pp.17-22
    • /
    • 2005
  • This study analyzed the change of physical and chemical characteristics on the safflower seed produce coated edible film. L and a value of safflower seed product coated edible film were slowly increased during storage, while b value decreased. Moisture content were increased during storage. Acid valus welt less increased when edible film was ased. Peroxide values were also increased during storage, but peroxide value in products coated sodium caseinate or k-carraggenan was $50\%$ in the control after 30 days of storage. The value of sensual test was higher in products coated sodium caseinate or k-carraggenan than those of control. Coating with sodium caseinate or k-carraggenan was effective for acidification retardation and quality improvement of safflower seed products.

Whey Protein-Based Edible Films and Coatings in Food Industry (식품산업에서 유청 단백질을 이용한 식용 필름과 코팅의 활용)

  • Jayeon Yoo;Sujatha Kandasamy;Hyoun Wook Kim;Hyung-Ho Bae;Jun-Sang Ham
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.4
    • /
    • pp.219-229
    • /
    • 2023
  • Consumer demand for products with health benefits and natural ingredients is significant for the expansion of functional foods. Edible films and coatings are an excellent way to diversify the market for functional foods and as substitutes for the prevailing packaging and products. Incorporation of whey protein (WP) and its active ingredients into edible films and coatings is a promising technique that can be applied to various food products. Numerous combinations can be used on an industrial scale depending on the purpose, product, nature of the film, type of active ingredient, and type of inclusions. In this review, we describe several characteristics of edible WP films and coatings used as novel packaging materials. WP-based packaging can play a beneficial role in sustainability because of the option of recycling materials rather than incinerating, as in synthetic laminates, because of the use of natural byproducts from the food industry as raw materials. However, cost-effectiveness is a driving force against industrial setbacks in current and future WP processing developments. The industrial application of this new technology depends on further scientific research aimed at identifying the mechanism of film formation to improve the performance of both the process and product. Furthermore, research such as consumer studies and long-term toxicity assessments are required to obtain significant market shares.

Characteristics of Bio-Piezoelectric Generator Using Edible Collagen Powder (식용 콜라겐 분말을 적용한 바이오 압전 발전기의 특성)

  • Ha-Young Son;Sang-Shik Park
    • Korean Journal of Materials Research
    • /
    • v.34 no.4
    • /
    • pp.215-222
    • /
    • 2024
  • Because collagen is inherently piezoelectric, research is being actively conducted to utilize it to harvest energy. In this study, a collagen solution was prepared using edible low-molecular-weight peptide collagen powder, and collagen films were fabricated using a dip coating method. The collagen films prepared by dip coating showed a smooth surface without defects such as pinholes or cracks. Dehydrothermal treatment of the collagen films was performed to induce a stable molecular structure through cross-linking. The collagen film subjected to dehydrothermal treatment at 110 ℃ for 24 h showed a thickness reduction rate of 19 %. Analysis of the collagen films showed that the crystallinity of the collagen film improved by about 7.9 % after dehydrothermal treatment. A collagen film-based piezoelectric nanogenerator showed output characteristics of approximately 13.7 V and 1.4 ㎂ in a pressure test of 120 N. The generator showed a maximum power density of about 2.91 mW/m2 and an output voltage of about 8~19 V during various human body movements such as finger tapping. The collagen film-based piezoelectric generator showed improved output performance with improved crystallinity and piezoelectricity after dehydrothermal treatment.

Antimicrobial Edible Film Developed from Defatted Corn Germ Meal Fermented by Bacillus subtilis

  • Kim Hyung-Wook;Roh I-Woo;Kim Kyung-Mi;Jang In-Suk;Ha Sang-Do;Song Kyung-Bin;Park Sang-Kyu;Lee Won-Young;Youn Kwang-Sup;Bae Dong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.597-604
    • /
    • 2006
  • In order to extend the shelf-life of packaged or coated foods, an antibacterial edible film containing 1.8% of BLS was developed from the defatted corn germ meal, which had been fermented with Bacillus subtilis under the optimum condition of pH 7.0-7.5 and $33^{\circ}C$ for 33 h. Water vapor permeability of the fermented film $(88.3mg/cm^2\;h)$ was higher than those of the normal corn germ films $(75.8mg/cm^2\;h)$. Protein solubility of the fermented film was also higher than ordinary corn germ film at the pH range of 3-10. The fermented corn germ film had higher tensile strength and lower % elongation (elongation rate) than the ordinary corn germ film. The antimicrobial activity of the film was more than 50% of the maximum activity after film production with heat treatment at $90^{\circ}C$ and pH adjustment to 9. When the corn germ protein film with bacteriocin-like substance was applied on the mashed sausage media containing E. coli, the bacterial growth inhibition was higher than the ordinary corn protein film.

Development of Edible Laminate-Composite Films Using Defatted Mustard Meal and Whey Protein Isolate (탈지겨자씨와 유청단백질을 재료로 사용한 가식성 적층필름의 개발)

  • Kim, Dayeon;Park, Ji Won;Noh, Bong-Soo;Min, Sea Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.711-715
    • /
    • 2012
  • A laminate-composite film was developed using industry co-products of defatted mustard meal (DMM) and whey protein isolate (WPI). An individually prepared DMM-based film (DMM film) and a WPI-based film (WPI film) were thermally laminated at $130^{\circ}C$ at a rate of 30 cm/min. Microscopic images exhibited that the DMM film and the WPI film were continuously attached in the laminate without void spaces. The tensile strength, elongation at break, and water vapor permeability for the laminate were 0.7MPa, 4.0%, and $6.9g{\cdot}mm/kPa/h/m^2$, respectively. Stretchability and heat seal strength of the laminate were higher than those of the un-laminated DMM film. The film layers of the laminate were physically overlapped, not forming new biopolymer units induced by molecular interactions. The opportunity for DMM films to be used as food packaging materials for wrapping and sealing could be increased by thermal lamination with WPI films, which improves the stretchability and heat sealability of DMM films.

Edible Packaging Film Derived from Mechanically Deboned Chicken Meat Proteins: Effect of Transglutaminase on Physicochemical Properties

  • Yayli, Damla;Turhan, Sadettin;Saricaoglu, Furkan Turker
    • Food Science of Animal Resources
    • /
    • v.37 no.5
    • /
    • pp.635-645
    • /
    • 2017
  • In this study, effect of transglutaminase (TGase) addition on physical, water barrier, optical and mechanical properties of mechanically deboned chicken meat protein (MDCM-P) films was investigated. When TGase was added to the films, the thickness increased, but the solubility decreased. Films treated with TGase exhibited higher water vapor permeability than control film (p<0.05). When TGase concentration increased, the $L^*$ values of films decreased, but $a^*$ and $b^*$ values increased. All films showed very good barrier properties against UV light. The highest tensile strength was obtained in MDCM-P films containing 3% TGase (p<0.05). The elongation at break values increased with the TGase concentration increasing from 1 to 3%, but decreased at higher enzyme concentration (p<0.05). The addition of TGase altered molecular organization and intermolecular interaction in the film matrix. TGase treated films showed smoother and ordered surface structure and homogeneous and compact microstructure. The results indicated that TGase use can be an effective approach in improving the solubility and mechanical properties of MDCM-P films.

Effect of Subatomospheric Pressure and Polyethylene Film Package on the Kacdugi Fermentation (깍두기의 숙성(熟成)에 미치는 감압(減壓) 및 Polyethylene Film 포장처리(包裝處理) 효과(效果))

  • Kim, Soon-Dong;Yoon, Soo-Hong;Kang, Meung-Su;Park, Nam-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.15 no.1
    • /
    • pp.39-44
    • /
    • 1986
  • Kacdugi fermented in the subatomospheric pressure(350mmHg) and polyethylene film package to improve the quality and to investigate the effect of fermentative control at $25^{\circ}C$. Brix degree, acidity, vitamin C content and number of total microbe and Lactobacilli was determined and also, the edible period of kacdugi was checked up by sensory assessment. The increasing rate of brix degree during kacdugi fermentation was high in the subatomospheric pressure, but decreased at the last period of fermentation as same tendency to the control, and it was preferably increased at the last period of fermentation in the polyethylene film package. However, the acidity was higher in the control than sbuatomospheric pressure but it was low in the polyethylene film package. Vitamin C content was high in the control at beginning and middle period of fermentation but high in sbuatomospheric pressure, and was low in the polyethylene film package at the last period of fermentation. The number of Lactobacilli was more in the subatomospheric pressure and polyethylene film package than the control, but it was suddenly incressed for the total microbe in the polyethylene film package at last period of fermentation. The edible periods of kacdugi by the sensory assessment of sour flavor, hardness and complex flavor was second days in the control. third days in the polyethylene film package, and fifth days in the subatomospheric pressure after soaking.

  • PDF

Physical Properties of Locust Bean Gum-Based Edible Film (Locust Bean Gum으로 제조한 가식성 필름의 물리적 특성)

  • Choi, Soo-Jin;Kim, Sang-Yong;Oh, Deok-Kun;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.363-371
    • /
    • 1998
  • Locust bean gum (LBG)-based edible film was prepared, and opacity, water vapor permeability (WVP), tensile strength (TS) and elongation (E) of the film were measured. Opacity values of the film was a little higher than that of other transparent films. WVP decreased as LBG concentration decreased. Plasticizers and drying temperature didn't seem to influence WVP. WVP of the film increased greatly at 85% RH as compared to that of 0% RH. WVP of the film seemed to increase linearly with thickness of the film. But WVP of the film was lower those of other edible films. TS increased with increase of LBG concentration, and decreased with increase of glycerol concentration. E decreased with increase of LBG concentration, and increased with increase of sorbitol concentratin. LBG-based composite films were prepared by adding agarose, k-carrageenan or xanthan gum. TS and E of the composite film with addition of k-carrageenan increased.

  • PDF