DOI QR코드

DOI QR Code

Characteristics of Bio-Piezoelectric Generator Using Edible Collagen Powder

식용 콜라겐 분말을 적용한 바이오 압전 발전기의 특성

  • Ha-Young Son (Department of Energy Materials & Chemical Engineering, Kyungpook National University) ;
  • Sang-Shik Park (Department of Energy Materials & Chemical Engineering, Kyungpook National University)
  • 손하영 (경북대학교 에너지신소재화학공학과) ;
  • 박상식 (경북대학교 에너지신소재화학공학과)
  • Received : 2024.03.28
  • Accepted : 2024.04.16
  • Published : 2024.04.27

Abstract

Because collagen is inherently piezoelectric, research is being actively conducted to utilize it to harvest energy. In this study, a collagen solution was prepared using edible low-molecular-weight peptide collagen powder, and collagen films were fabricated using a dip coating method. The collagen films prepared by dip coating showed a smooth surface without defects such as pinholes or cracks. Dehydrothermal treatment of the collagen films was performed to induce a stable molecular structure through cross-linking. The collagen film subjected to dehydrothermal treatment at 110 ℃ for 24 h showed a thickness reduction rate of 19 %. Analysis of the collagen films showed that the crystallinity of the collagen film improved by about 7.9 % after dehydrothermal treatment. A collagen film-based piezoelectric nanogenerator showed output characteristics of approximately 13.7 V and 1.4 ㎂ in a pressure test of 120 N. The generator showed a maximum power density of about 2.91 mW/m2 and an output voltage of about 8~19 V during various human body movements such as finger tapping. The collagen film-based piezoelectric generator showed improved output performance with improved crystallinity and piezoelectricity after dehydrothermal treatment.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (NRF-2021R1A5A8033165 and NRF-2020R1I1A3072902).

References

  1. T. Liu, Y. Wang, M. Hong, J. Venezuela, W. Shi and M. Dargusch, Nano Today, 52, 101945 (2023). 
  2. D. M. Shin, S. W. Hong and Y. H. Hwang, Nanomaterials, 10, 123 (2020). 
  3. X. Chen, S. Xu, N. Yao and Y. Shi, Nano Lett., 10, 2133 (2010). 
  4. Z Vakulov, A. Geldash, D. Khakhulin, M. V. Il'ina, Oleg I. Il'in, V. S. Klimin, V. N. Dzhuplin, B. G. Konoplev, Z. He and O. A. Ageev, Materials, 13, 3984 (2020). 
  5. B. Kumar and S. W. Kim, Nano Energy, 1, 342 (2012). 
  6. A. Koka, Z. Zhou and H. A. Sodano, Energy Environ. Sci., 7, 288 (2014). 
  7. C. Fei, X. Liu, B. Zhu, D. Li, X. Yang, Y. Yang and Q. Zhou, Nano Energy, 51, 146 (2018). 
  8. D. Vatansever, R. L. Hadimani, T. Shah and E. Siores, Smart Mater. Struct., 20, 055019 (2011). 
  9. J. Zhu, L. Jia and R. Huang, J. Mater. Sci.: Mater. Electron., 28, 12080 (2017). 
  10. K. Kim, M. Ha, B. Choi, S. H. Joo, H. S. Kang, J. H. Park, B. Gu, C. Park, C. Park, J. Kim, S. K. Kwak, H. Ko, J. Jin and S. J. Kang, Nano Energy, 48, 275 (2018). 
  11. J. Li, Y. Long, F. Yang and X. Wang, Curr. Opin. Solid State Mater. Sci., 24, 100806 (2020). 
  12. R. Wang, J. Sui and X. Wang, ACS Nano, 16, 17708 (2022). 
  13. J. Jacob, N. More, K. Kalia and G. Kapusetti, Inflammation Regener., 38, 2 (2018). 
  14. C. Kumar, A. Gaur, S. Tiwari, A. Biswas, S. K. Rai and P. Maiti, Compos. Commun., 11, 56 (2019). 
  15. S. K. Ghosh and D. Mandal, Nano Energy, 28, 356 (2016). 
  16. H. Y. Son and S. S. Park, Mater. Today Sustainability, 25, 100689 (2024). 
  17. I. Ielo, G. Calabrese, G. De Luca and S. Conoci, Int. J. Mol. Sci., 23, 9721 (2022). 
  18. L. Zhang, S. Gopalakrishnan, K. Li, L. S. Wang, Y. Han and V. M. Rotello, ACS Appl. Mater. Interfaces, 12, 6590 (2020).  https://doi.org/10.1021/acsami.9b18256
  19. Z. Meng, X. Zheng, K. Tang, J. Liu, Z. Ma and Q. Zhao, Int. J. Biol. Macromol., 51, 440 (2012). 
  20. M. B. Fauzi, Y. Lokanathan, B. S. Aminuddin, B. H. I. Ruszymah and S. R. Chowdhury, Mater. Sci. Eng., C, 68, 163 (2016). 
  21. P. P. Acharya, M. H. Kupendra, A. Fasim, S. S. More and V. K. Murthy, 3 Biotech, 12, 82 (2022).  https://doi.org/10.1007/s13205-022-03114-5
  22. L. Sun, B. Li, W. Song, L. Si and H. Hou, Process Biochem., 63, 229 (2017). 
  23. M. Madaghiele, E. Calo, L. Salvatore, V. Bonfrate, D. Pedone, M. Frigione and A. Sannino, J. Biomed. Mater. Res., Part A, 104, 186 (2016). 
  24. S. Yunoki, T. Suzuki and M. Takai, J. Biosci. Bioeng., 96, 575 (2003). 
  25. E. Danila, R. Stan, M. A. Kaya, G. Voicu, M. M. Marin, A. Morosan, I. Titorencu and R. Tutuianu, Waste Biomass Valorization, 13, 917 (2022). 
  26. O. S. Rabotyagova, P. Cebe and D. L. Kaplan, Mater. Sci. Eng., C, 28, 1420 (2008). 
  27. J. H. Muyonga, C. G. B. Cole and K. G. Duodu, Food Chem., 86, 325 (2004). 
  28. M. G. Haugh, M. J. Jaasma and F. J. O'Brien, J. Biomed. Mater. Res., Part A, 89, 363 (2009).