Browse > Article

Physical, Mechanical, and Antimicrobial Properties of Edible Film Produced from Defatted Soybean Meal Fermented by Bacillus subtilis  

KIM HYUNG-WOOK (Department of Applied Biology & Chemistry, Konkuk University)
KO EUN-JUNG (Department of Applied Biology & Chemistry, Konkuk University)
HA SANG-DO (Department of Food Science & Technology, Chung-Ang University)
SONG KYUNG-BIN (Department of Food Science & Technology, Chungnam National University)
PARK SANG-KYU (Material Science & Engineering, Kwangju Institute of Science & Technology)
CHUNG DUCK-HWA (Department of Food Science & Technology, Gyeongsang National University)
YOUNS KWANG-SUP (Department of Applied Biology & Chemistry, Konkuk University)
BAE DONG-HO (Department of Food Science & Technology, Catholic University of Daegu)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.4, 2005 , pp. 815-822 More about this Journal
Abstract
In order to extend the shelf-life of packaged or coated foods, an antibacterial edible film was developed from soybean meal that had been fermented with Bacillus subtilis under the optimum condition of pH 7.0-7.5 and $33^{\circ}C$ for 33 h. The water vapor permeability of the fermented film ($86.0 mg/cm^2{\cdot}h$) was higher than those of normal soybean films ($66.9 mg/cm^2{\cdot}h$). Protein solubility of the fermented film was also higher than ordinary soy protein film at the pH range of 3 -10. The fermented soybean film had higher tensile strength and lower $\%$ elongation (elongation rate) than the ordinary soybean film, mainly because partial hydrolysis of proteins in the soybean film occurred during fermentation. Antimicrobial properties of the fermented film on foodstuffs were measured by placing the films on surime, jerked beef, and mashed sausage media; containing $10^2-10^3$ CFU/plate of foodborne pathogenic bacteria, and showed significantly higher inhibitory effects on the growths of all the indicating bacteria. The film could be used as a packaging material in the food industry. However, before direct application of the fermented film to the commercial food industry, its poor mechanical and antibacterial properties need to be improved.
Keywords
Bacteriocin-like substance; fermented soybean film; antimicrobial film; physical and mechanical properties of film; functional film;
Citations & Related Records

Times Cited By Web Of Science : 8  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 ASTM (American Society for Testing Methods). 1995. Standard test method for water vapor transmission of materials (E96-95b). In Annual Book of American standards Testing Methods. Philadelphia, U.S.A
2 Cagri, A., Z. E. Ustunol, and T. Ryser. 2003. Antimicrobial edible film and coatings. J. Food Protect. 67: 833-848
3 Oh, S. J., M. H. Kim, J. C. John, and W. W. Randy. 2003. Purification and characterization of.an antilisterial bacteriocin produced by Leuconostoc sp. W65. J. Microbiol. Biotechnol. 13: 680-686
4 Mauer, L. J., D. E. Smith, T. P. Labuza. 2000. Water vapor permeability, mechanical, and structural properties of edible 13-casein films. Int. Dairy J. 10: 353-358   DOI   ScienceOn
5 Park, S. K., C. O. Rhee, D. H. Bae, and S. Hetiarachchy. 2001. Mechanical properties and water-vapor permeability of soy protein film affected by calcium salts and glucono-dlactone. J. Agric. Food Chem. 49: 2308-2312   DOI   ScienceOn
6 Rhim, J. W., A. Gennadios, H. Akihiro, L. C. Weller, and A. H. Milford. 2000. Solubility, tensile, and color properties of modified soy protein isolate films. J. Agric. Food Chem. 48: 4937-4941   DOI   ScienceOn
7 Schou, M., A. Longares, C. H. Montesinos, F. J. Monahan, D. O' Riordan, and M. O'Sullivan. 2004. Properties of edible sodium caseinate film and their application as food wrapping. Lebensrn.-Wiss. u.-Technol. 24: 234-246
8 Park, H. J. and M. S. Chinnan. 1995. Gas and water vapor barrier properties of edible films from protein and cellulosic materials. J. Food Eng. 25: 497-507   DOI   ScienceOn
9 Kim, H. W., K. M. Kim, E. J. Ko, S. K. Lee, S. D. Ha, K. B. Song, S. K. Park, K. S. Kwon, and D. H. Bae. 2004. Development of antimicrobial edible film from defatted soybean meal fermented by Bacillus subtilis. J. Microbiol. Biotechnol. 14: 1303-1309
10 Micard, V., R. Belamri, M. H. Morel, and S. Guilbert. 2000. Properties of chemically and physically treated wheat gluten. J. Agric. Food Chem. 48: 2948-2953   DOI   ScienceOn
11 Mariniello, L., P. D. Pierro, C. Esposito, S. Angela, M. Paolo, and P. Raffaele. 2003. Preparation and mechanical properties of edible pectin-soy flour films obtained in the absence or presence oftransglutaminase. J. Biotechnol. 102: 191-198   DOI   ScienceOn
12 Kim, H. J., J. H. Kim, J. H. Son, H. J. Seo, S. J. Park, N. S. Paek, and S. K. Kim. 2004. Characterization of bacteriocin produced by Lactobacillus bulgaricus. J. Microbiol. Biotechnol. 14: 503-508
13 ASTM (American Society for Testing Methods). 1995. Standard test method for tensile properties of thin plastic sheeting (D882-95a). In Annual Book of American standards Testing Methods. Philadelphia, U.S.A
14 Kumar, C. G and S. K. Anand. 1998. Significance of microbial biofilms in food industry: Review. Int. J. Food Microbiol. 42: 9-27   DOI   PUBMED   ScienceOn
15 Khouti, Z. and J. P. simon. 1997. Detection and partial characterization of a bacteriocin produced by Carnobacteriurn piscicola 213. J. Industr. Microbiol. Biotechnol. 19: 28-33   DOI   ScienceOn
16 Paik, H. D., S. K. Lee, S. Heo, S. Y. Kim, T. J. Kwon, and H. H. Lee. 2004. Purification and characterization of the fibrinolytic enzyme produced by Bacillus subtilis KCK-7 from Chungkookjang. J. Microbiol. Biotechnol. 14: 829-835
17 Sabato, S. F., B. Ouattara, H. Yu, G D. Aprano, C. Le Tien, M. A. Mateescu, and M. Lacroix. 2001. Mechanical and barrier properties of cross-linked soy and whey protein based films. J. Agric. Food Chem. 49: 1397-1403   DOI   ScienceOn
18 Blacido, D. T., J. S. Paulo, and C. M. Florencia. 2004. Development and characterization of biofilms based on Amaranth flour (Amaranthus caudatus). J. Food Eng. 67: 215-223
19 Maria, P. and S. Mats. 2005. Water vapor permeability and mechanical properties of mixed starch-mono glyceride films and effect of forming conditions. Food Hydrocolloids 19: 123-132   DOI   ScienceOn
20 Moon, G S., C. H. Kang, Y. R. Pyun, and W. J. Kim. 2004. Isolation, identification, and characterization of a bacteriocin-producing Enterococcus sp. from kimchi and its application to kimchi fermentation. J. Microbiol. Biotechnol. 14: 924-931
21 Cho, S. Y. and C. Rhee. 2004. Mechanical properties and water vapor permeability of edible films made from fractionated soy proteins with ultrafiltration. Lebensrn.-Wiss. u.-Technol. 37: 833-839   DOI   ScienceOn
22 Liu, C. C., M. Angela, T. Garay, and M. E. C. Perez. 2004. Physical and mechanical properties of peanuts protein films. Lebensrn.-Wiss. u.-Technol. 37: 731-738   DOI   ScienceOn
23 Monti, J. C. and R. Jost. 1978. Enzymatic solubilization of heat-denatured cheese whey protein. J. Dairy Sci. 61: 1233
24 Orliac, O., A. Rouilly, S. Francoise, and R. Luc. 2003. Effect of virus plasticizers on the mechanical properties, water resistance and aging of thermo-moulded films made from sunflower proteins. lndustr. Crops Prod. 18: 91-100   DOI   ScienceOn
25 Longares, A., F. J. Monahen, E. D. O'Riordan, and M. O'Sullivan. 2004. Physical properties and sensory evaluation of WPI films of varying thickness. Lebensrn.-Wiss. u.Technol. 37: 545-550   DOI   ScienceOn
26 Chobert, J. M. and M. Z. Zitohy. 1988. Solubility and emulsifYing properties of caseins modified enzymatically by Streptococcus aureus V8 protease. J. Agric. Food Chem. 36: 220   DOI
27 Emna, M., V. Caroline, and L. Monique. 2000. Bacterial use of iofilms cross-linked by gamma irradiation. Radiat. Phys. Chem. 58: 203-205   DOI   ScienceOn
28 Eugenio, P., B. Carla, M. Marcella, and R. Annamaria. 1995. A comparison of methods for measurement of bacteriocin activity. J. Microbiol. Methods 22: 95-108   DOI   ScienceOn
29 Kim, K. M., L. W. Curtis, A. H. Milford, and A. Gennadios. 2002. Heat curing of soy protein films at selected temperatures and pressures. Lebensrn.-Wiss. u.-Technol. 35: 140-145   DOI   ScienceOn