• Title/Summary/Keyword: edge of image

Search Result 2,461, Processing Time 0.031 seconds

Edge Detection using Enhanced Cost Minimization Methods

  • Seong-Hoon Lee
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.88-93
    • /
    • 2024
  • The main problem with existing edge detection techniques is that they have many limitations in detecting edges for complex and diverse images that exist in the real world. This is because only edges of a defined shape are discovered based on an accurate definition of the edge. One of the methods to solve this problem is the cost minimization method. In the cost minimization method, cost elements and cost functions are defined and used. The cost function calculates the cost for the candidate edge model generated according to the candidate edge generation strategy, and if the cost is found to be satisfactory, the candidate edge model becomes the edge for the image. In this study, we proposed an enhanced candidate edge generation strategy to discover edges for more diverse types of images in order to improve the shortcoming of the cost minimization method, which is that it only discovers edges of a defined type. As a result, improved edge detection results were confirmed.

Edge Detection Using an Ant System Algorithm (개미 시스템 알고리듬을 이용한 윤곽선 검출)

  • 이성열;이창훈
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.8 no.4
    • /
    • pp.38-45
    • /
    • 2003
  • This paper presents a meta-heuristic solution technique, Ant System (AS)algerian to solve edge detection problem. We define the quality of edge in terms of dissimilarity, continuity, thickness and length. We cast edge detection as a problem in cost minimization. This is achieved by the formulation of a cost function that inversely evaluates the quality of edge configuration. Twelve windows for enhancing dissimilarity regions based on the valid edge structures are used. The AS algorithm finds the optimal set of edge pixels based on the cost function. The experimental results show that the properly reduced set of edge pixels could be found regardless how complicated the image is.

  • PDF

Speckle Noise Reduction and Edge Enhancement in Ultrasound Images Based on Wavelet Transform

  • Kim, Yong-Sun;Ra, Jong-Beom
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.122-131
    • /
    • 2008
  • For B-mode ultrasound images, we propose an image enhancement algorithm based on a multi-resolution approach, which consists of edge enhancing and noise reducing procedures. Edge enhancement processing is applied sequentially to coarse-to-fine resolution images obtained from wavelet-transformed data. In each resolution, the structural features of each pixel are examined through eigen analysis. Then, if a pixel belongs to an edge region, we perform two-step filtering: that is, directional smoothing is conducted along the tangential direction of the edge to improve continuity and directional sharpening is conducted along the normal direction to enhance the contrast. In addition, speckle noise is alleviated by proper attenuation of the wavelet coefficients of the homogeneous regions at each band. This region-based speckle-reduction scheme is differentiated from other methods that are based on the magnitude statistics of the wavelet coefficients. The proposed algorithm enhances edges regardless of changes in the resolution of an image, and the algorithm efficiently reduces speckle noise without affecting the sharpness of the edge. Hence, compared with existing algorithms, the proposed algorithm considerably improves the subjective image quality without providing any noticeable artifacts.

Precise Edge Detection Method Using Sigmoid Function in Blurry and Noisy Image for TFT-LCD 2D Critical Dimension Measurement

  • Lee, Seung Woo;Lee, Sin Yong;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.69-78
    • /
    • 2018
  • This paper presents a precise edge detection algorithm for the critical dimension (CD) measurement of a Thin-Film Transistor Liquid-Crystal Display (TFT-LCD) pattern. The sigmoid surface function is proposed to model the blurred step edge. This model can simultaneously find the position and geometry of the edge precisely. The nonlinear least squares fitting method (Levenberg-Marquardt method) is used to model the image intensity distribution into the proposed sigmoid blurred edge model. The suggested algorithm is verified by comparing the CD measurement repeatability from high-magnified blurry and noisy TFT-LCD images with those from the previous Laplacian of Gaussian (LoG) based sub-pixel edge detection algorithm and error function fitting method. The proposed fitting-based edge detection algorithm produces more precise results than the previous method. The suggested algorithm can be applied to in-line precision CD measurement for high-resolution display devices.

Comparison of Edge Localization Performance of Moment-Based Operators Using Target Image Data

  • Seo, Suyoung
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.13-24
    • /
    • 2016
  • This paper presents a method to evaluate the performance of subpixel localization operators using target image data. Subpixel localization of edges is important to extract the precise shape of objects from images. In this study, each target image was designed to provide reference lines and edges to which the localization operators can be applied. We selected two types of moment-based operators: Gray-level Moment (GM) operator and Spatial Moment (SM) operator for comparison. The original edge localization operators with kernel size 5 are tested and their extended versions with kernel size 7 are also tested. Target images were collected with varying Camera-to-Object Distance (COD). From the target images, reference lines are estimated and edge profiles along the estimated reference lines are accumulated. Then, evaluation of the performance of edge localization operators was performed by comparing the locations calculated by each operator and by superimposing them on edge profiles. Also, enhancement of edge localization by increasing the kernel size was also quantified. The experimental result shows that the SM operator whose kernel size is 7 provides higher accuracy than other operators implemented in this study.

A Study on the Image/Video Data Processing Methods for Edge Computing-Based Object Detection Service (에지 컴퓨팅 기반 객체탐지 서비스를 위한 이미지/동영상 데이터 처리 기법에 관한 연구)

  • Jang Shin Won;Yong-Geun Hong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.11
    • /
    • pp.319-328
    • /
    • 2023
  • Unlike cloud computing, edge computing technology analyzes and judges data close to devices and users, providing advantages such as real-time service, sensitive data protection, and reduced network traffic. EdgeX Foundry, a representative open source of edge computing platforms, is an open source-based edge middleware platform that provides services between various devices and IT systems in the real world. EdgeX Foundry provides a service for handling camera devices, along with a service for handling existing sensed data, which only supports simple streaming and camera device management and does not store or process image data obtained from the device inside EdgeX. This paper presents a technique that can store and process image data inside EdgeX by applying some of the services provided by EdgeX Foundry. Based on the proposed technique, a service pipeline for object detection services used core in the field of autonomous driving was created for experiments and performance evaluation, and then compared and analyzed with existing methods.

A Study on Edge Detection using Grey-level Variation of Mask Image (마스크 내 영상의 휘도 변화를 이용한 에지검출에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.204-209
    • /
    • 2013
  • The image processing has been applied to various fields along with development of visual media. The boundary parts in which brightness of image dramatically changes are important factors in order to analysis characteristics of image because edge contains important information and significant features. A number of researches for detecting these edges have been conducted and conventional edge detection methods using relationship between adjacent pixels are that operation speed is superior, but the edge detection characteristics are insufficient because they use fixed mask without considering gray-level variation. In this paper, the novel algorithm using grey-level variation of image in mask is proposed.

Evaluation of Denoising Filters Based on Edge Locations

  • Seo, Suyoung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.503-513
    • /
    • 2020
  • This paper presents a method to evaluate denoising filters based on edge locations in their denoised images. Image quality assessment has often been performed by using structural similarity (SSIM). However, SSIM does not provide clearly the geometric accuracy of features in denoised images. Thus, in this paper, a method to localize edge locations with subpixel accuracy based on adaptive weighting of gradients is used for obtaining the subpixel locations of edges in ground truth image, noisy images, and denoised images. Then, this paper proposes a method to evaluate the geometric accuracy of edge locations based on root mean squares error (RMSE) and jaggedness with reference to ground truth locations. Jaggedness is a measure proposed in this study to measure the stability of the distribution of edge locations. Tested denoising filters are anisotropic diffusion (AF), bilateral filter, guided filter, weighted guided filter, weighted mean of patches filter, and smoothing filter (SF). SF is a simple filter that smooths images by applying a Gaussian blurring to a noisy image. Experiments were performed with a set of simulated images and natural images. The experimental results show that AF and SF recovered edge locations more accurately than the other tested filters in terms of SSIM, RMSE, and jaggedness and that SF produced better results than AF in terms of jaggedness.

Estimating Directly Damage on External Surface of Container from Parameters of Capsize-Gaussian-Function

  • Son TRAN Ngoc Hoang;KIM Hwan-Seong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.297-302
    • /
    • 2005
  • In this paper, an estimating damage on external surface of container using Capsize-Gaussian-Function (be called CGF) is presented. The estimation of the damage size can be get directly from two parameters of CGF, these are the depth and the flexure, also the direction of damage. The performance of the present method has been illustrated using an image of damage container, which had been taken from Hanjin Busan Port, after using image processing techniques to do preprocessing of the image, especially, the main used technique is Canny edge detecting that is widely used in computer vision to locate sharp intensity and to find object boundaries in the image, then correlation between the edge image from the preprocessing step and the CGF with three parameters (direction, depth, flexure), as a result, we get an image that perform damage information, and these parameters is an estimator directly to the damage.

  • PDF

Adaptive Edge-preserving Image Restoration (EDGE를 보존하는 적응 영상 복원)

  • Kim, Nam Chul;Lee, Jae Dug
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.5
    • /
    • pp.726-731
    • /
    • 1986
  • An effective filtering algorithm which can reduce noise and preserve edges for the restoration of an image degraded by additive white Gaussian noise is presented. The algorithm proposed in this paper is an extension of Lee's algorithm modified to use local gradient information as well as local statistics. It does not require image modeling, and removes noise along the orientaiton of edges so that it does not blur the edge.

  • PDF