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Abstract

For B-mode ultrasound images, we propose an image enhancement algorithm based on a multi-resolution approach, which consists of edge
enhancing and noise reducing procedures. Edge enhancement processing is applied sequentially to coarse-to-fine resolution images obtained
from wavelet-transformed data. In each resolution, the structural features of each pixel are examined through eigen analysis. Then, if a pixel
belongs to an edge region, we perform two-step filtering: that is, directional smoothing is conducted along the tangential direction of the edge
to improve continuity and directional sharpening is conducted along the normal direction to enhance the contrast. In addition, speckle noise
is alleviated by proper attenuation of the wavelet coefficients of the homogeneous regions at each band. This region-based speckle-reduction
scheme is differentiated from other methods that are based on the magnitude statistics of the wavelet coefficients. The proposed algorithm
enhances edges regardless of changes in the resolution of an image, and the algorithm efficiently reduces speckle noise without affecting the
sharpness of the edge. Hence, compared with existing algorithms, the proposed algorithm considerably improves the subjective image

quality without providing any noticeable artifacts.
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| . INTRODUCTION

Itrasound imaging has become a popular modality

because it is safe, noninvasive, portable, relatively
inexpensive, and has a real-time imaging capability. However,
ultrasound images have a fundamental problem of poor
quality, mainly caused by multiplicative speckle noise. Speckle
noise, which is random mottling with bright and dark spots,
obscures the fine details of an image and degrades the detect-
ability of low-contrast lesions [1-4].

To reduce speckles, researchers have proposed a number of
methods, such as temporal averaging, median filtering, homo-
morphic Wiener filtering, and adaptive spatial filtering [1-6].
Temporal averaging tries to increase the signal-to-noise ratio
(SNR) by averaging the mulitiple uncorrelated images that are
obtained by the transducer shift [1,4]. This method is good at
reducing speckle noise but causes a loss of small details due to
blurring. Homomorphic Wiener filtering converts multiplicative
noise into additive noise and applies low-pass Wiener
filtering. Adaptive weighted median filtering, which is an adv-
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anced version of median filtering, still has a limit to keep fine
details in the image [5]. By using local features of image
texture, adaptive spatial filtering performs low-pass filtering
of speckle noise while preserving a resolved-object structure
[6].

To reduce noise while preserving edges, other researchers
have proposed more advanced filtering techniques based on
anisotropic diffusion [7,8]. One recent method introduced the
nonlinear coherent diffusion (NCD) model and proposed a
Gaussian smoothing scheme based on the NCD model [8].
However, although the NCD model may be effective for
finding edge pixels and their orientations in an ordinary image
of homogeneous resolution, the NCD model fails to determine
the resolution of a B-mode ultrasound image due to the
imaging characteristics of such images [9,10].

Fig. 1 shows that a practical ultrasound image has a varying
lateral resolution along the depth axis. For an image with an
inhomogeneous resolution, edge detection based on the NCD
model is inefficient because this method becomes sensitive to
the noise of low resolution edges. Fig. 2 shows the problem of
the NCD-based edge detection scheme for a phantom image;
the image includes edges of various transition widths (or
various resolutions) and white Gaussian noise. Fig. 2 also shows



Dead | ...-*
Zone

Resolutfon ;
Aray i .
T L Verical
- Group

Horizontal ~
Group

(a) (o)

Yong Sun Kim, Jong Beom Ra

FWHM (mm)
a— — = 4
(LN WV
A A 1]
Point location
{c) (d)

Fig. 1. (a) Aresolution phantom of model 539, ATS Labs. (b) A coresponding ultrasound image. (c) Cut views along the lateral direction of vertically aligned points.
(d) A full-width at half maximum, which represents the lateral resolution at each point.

that the NCD-based scheme has limited edge-detecting
capabilities and is sensitive to noise.

In contrast to the single-resolution approach mentioned
above, researchers have proposed various enhancement algor-
ithms based on the multi-resolution approach [11-19]. Such
algorithms generally use wavelet transform-based filtering,
which relies on the proper modification of wavelet coefficients.
The wavelet shrinkage method, for instance, tries to reduce
speckle noise by reducing the coefficients that correspond to
speckle noise [12]. And, in addition to reducing noise, the
wavelet shrinkage and contrast enhancement (WSCE) method
tries to enhance the contrast by amplifying the wavelet
coefficients that correspond to the edges [13]. Both these
methods assume that the signal energy is larger than the noise
energy in all wavelet levels. Then, by thresholding the wavelet
coefficients, the two methods try to discriminate the signal and

Fig. 2, (a) Aphantomimage with edges of various transition widths and white
Gaussian noise (0=30).(b) Edges detected by the NCD-based edge
detection scheme. The variance of the Gaussian noise is set to 9 and
the threshold value is set to 200.

noise in the detail sub-bands at each wavelet level. In higher
wavelet levels of fine resolution, however, the SNR of
ultrasound images is too low to enable the signal to be
separated from the noise by the thresholding of the wavelet
coefficients (refer to Fig.3). Hence, depending on the adopted
threshold value in each level, the signal can be reduced
together with noise or the noise can be amplified with the
signal.

As mentioned above, the simultaneous approach to redu-
cing the speckle noise and enhancing edge features is still a
challenging problem because the conventional thresholding
scheme is not good enough to discriminate the signal from the
noise. Moreover, existing methods do not consider the subjec-
tive quality and tend to produce images that look artificial. We
therefore develop an algorithm that efficiently improves
ultrasound images by alleviating speckle noise while
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Fig. 3, (a) The original signal and its noisy signal with an SNR of 20dB. The
noisy signal includes white Gaussian noise. (b) Results of a one-level
wavelet transform. In the lower graph of (b), the signal information is
difficult to distinguish from the noise in the first level.
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enhancing edges or anatomical features; and the resultant
images facilitate diagnosis. Based on a multi-resolution
approach, the algorithm efficiently enhances edges of various
transition widths and improves the subjective quality by
properly reducing speckle noise rather than removing it.

We organize this paper as follows: In Section II, we
describe the proposed algorithm. In Section II-A, we briefly
review the wavelet transform and its characteristics in relation
to the proposed algorithm. In Section II-B, we introduce a new
gradient for efficient edge examination; the new gradient is a
slightly modified version of the conventional definition of a
gradient. We also explain the edge extraction procedure,
which is based on a structure matrix derived from the new
gradient. In Section II-C, we describe the proposed procedures
for reducing the speckle and enhancing the edges. In Sections
I and IV, we compare the experimental results of the
proposed algorithm with the results of two other algorithms
and discuss them. Finally, in Section V, we draw our conclusion.

Il. PROPOSED ALGORITHM

The proposed algorithm adopts a wavelet transform based
multi-resolution approach. Fig. 4 shows an overall block
diagram of the proposed algorithm, which uses an N-level
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Fig. 4, Overall block diagram of the proposed algorithm
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wavelet transform. As shown in the figure, the algorithm has
two parts: the analyzing phase and the filtering phase. In the
analyzing phase, edges are identified and their orientations are
examined at each resolution image during the image decom-
position. Thus, we can effectively divide the image into edge
regions and homogeneous regions where the speckle noise is
noticeable. In the filtering phase, a procedure that enhances
edges in edge regions and reduces noise in homogeneous
regions is sequentially applied to images with levels of
resolution that range from a coarse to fine.

A. Wavelet transform

Noise filtering in the frequency domain can cause edge
blurring because the filtering cannot be spatially adaptive.
Meanwhile, filtering in the spatial domain can solve this
problem by excluding edges from the filtering process. In
general, the edges of an image can be easily excluded when
the image resolution is unique and the SNR is high. However,
because ultrasound images contain edges of various transitions
with a Jow SNR, it may be difficult to accurately exclude
edges in the spatial domain. Hence, for effective filtering of
ultrasound images, we adopt a multi-resolution approach,
based on a wavelet transform that simultaneously provides
frequency information and spatial information.

The wavelet transform, which can decompose an image into
several frequency bands by using wavelet functions and
scaling functions, can be easily implemented in the digital
domain by low-pass filtering, high-pass filtering, down-sampling,
and up-sampling. Fig. 5 shows a couple of examples of the
wavelet transform. As shown in Fig. 5(a), a one-level wavelet
transform enables an original image to be decomposed into
four sub-band images: LL; denotes a low-resolution image
acquired by low-pass filtering along the x and y directions
and the twofold decimation and HL;, LH,, and HH; represent
the vertical, horizontal, and diagonal details, respectively. As
shown in Fig. 5(b), we accomplish a two-level wavelet
transform by repeating the one-level wavelet transform on the
LL; image and decomposing the LL, image into LL,, HL,,

(a) (b)

Fig. 5. (a) The one-level wavelet fransform. (b) The two-level wavelet transform
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Fig. 6. Frequency spectra at the L and H bands in the one-level wavelet
transform

LH,, and HH;. The one-level inverse wavelet transform then
reconstructs the original resolution image from the four
sub-band images of the first level by up-sampling and
filtering. And the two-level inverse wavelet transform seque-
ntially applies the one-level inverse wavelet transform to the
four sub-band images of the second level and the four sub-
band images of the first level.

We now review the frequency characteristics of the wavelet
bands in the wavelet transform. For simplicity, we consider a
1-D one-level wavelet transform. Fig. 6 shows that the
frequency components in the range 0< w < /2 of the original
signal are stretched to the range 0<<w < in the L band
signal. In the H band signal, on the other hand, the rest of the
frequency components in the range 7/2 <w <7 are inversely
stretched to the range 0 <w < 7. These characteristics can be
simply extended to the 2-D wavelet transform.

When we use digital filters and decimation to decompose a
signal, aliasing is introduced due to non-ideal filter character-
istics. The signal components affected by aliasing are mainly
located near the cut-off frequency of the filters. And the
aliasing is compensated and eliminated in the reconstruction
procedure because of the symmetry of the quadrature mirror
filters. In wavelet transform-based filtering, however, decom-
posed signals may be modified before the reconstruction.
Hence, we cannot guarantee that the aliasing artifacts are
removed in the reconstruction procedure.

B. Analyzing phase

For adaptive filtering, we need to determine the edge points
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and acquire information regarding their positions and
directions. Fig. 7 shows that wavelet domain processing is
more effective for identifying various edges of different
transitions than spatial domain processing. However, a method
of thresholding wavelet coefficients or the Bayesian method is
not good enough for identifying edges in ultrasound images of
low SNR [11-19], because the magnitude of the wavelet
coefficients of the edge signals is comparable to that of noise
in the HL, LH, and HH band images (see Fig. 3). Meanwhile,
it is known that the images of the LL bands are less affected by
noise and have good spatial information. Hence, to identify
edges, we analyze the LL band images at all levels of wavelet
decomposition by using structural information.

An anisotropic diffusion model is effective for identifying
edges. Hence, in analyzing the images of the LL bands, we use
a nonlinear anisotropic coherent diffusion model based on a
structure matrix [7,8]. The structure matrix at each pixel, J,,
can be written as

(VD)= KX (VIR VI 1
= K,*(VIVI) forp= 0, 0

where V 7 denotes the gradient at each pixel, the symbol * &’
denotes the tensor product, and the symbol “*’ denotes the
convolution operator. Gaussian convolution kernel, X, is

expressed as follows:

2, 9
K, (z,y)= (27rp2)*1-exp(— z 2:221 ) )

Equation (1) can be rewritten as

2
p*] K*[z

K, L,
* 5 |- (3)
KALL K

1, vn= 57 1= M

The eigenvalue decomposition of the term on the right side of
(3) results in the following equation:

ty 0)
0t

T
“1 ) @)

1,(vD= (v, w2)( L
; w,
where the eigenvector w, represents the direction with the
maximum variation and the eigenvector w, represents the
direction with the minimum variation and the eigenvalues y4
and u, denote the magnitudes of w; and w,.
A pixel with an anisotropic nature has a large difference
between its two eigenvalues and is likely to be located on an
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edge. In this case, we can consider the edge direction (or the
tangential direction of the edge) to be the direction of the
eigenvector with the smaller eigenvalue. In contrast, a pixel
with an isotropic nature is likely to be located in a homog-
eneous region where speckle noise is dominant. Hence, if the
difference between a pixel’s two eigenvalues is small, the
pixel is considered speckle noise. From eigen analysis of the
LL; band image, we can therefore obtain the edge map
E,(z,y) as follows:

1 N =l > Thy
2 (=, y)-— {O elsewhere , )
where [=1, -*- , N for an N-level wavelet transform.

For a phantom image with edges of various transition
widths, as shown in Fig. 2(a), we use the diffusion model
described above to obtain edge maps for the images of the
LL1, LL,, and LL; bands. Fig. 7 shows the detected edges for
the three bands. In contrast to the NCD-based edge detection
scheme, which is shown in Fig. 2(b), edges of various transi-
tions are well determined for the images of the three bands as
shown in Fig. 7.

To obtain the structure matrix, we need the gradient at every
point. The matrix is usually obtained with the following
definitions:

Uz +1,y) -
(z,y)= {I(z,y+ 1)—

I(z—1,y)}/2,
I(z,y—1)}/2,

—
B
Ned
~—
Il

(6)

&~

where I(x, y) represents the intensity value at point (z, y) in
an image; and 7, and /, denote the corresponding gradient

values along the x and y directions, respectively. However,
since (6) produces a zero gradient value for the pixel that
represents a peak or a valley, that pixel is not classified as an
edge pixel; though the exclusion of such pixels is undesirable
for determining edge points.

Fig. 7. The edges detected at levels LLs, LLy, and LL; with the proposed
multi-resolution method. The phantom image is the same as that used
in Fig. 2(a).
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A pixel in a coarser resolution image reveals the structural
information of several pixels in a fine resolution image.
Hence, for edge enhancement, the accurate determination of
the location and direction of an edge is more important in
coarser resolution images than in the fine resolution image.
Hence, we modify the definition of a gradient as follows:

Hz—1,9)1}/2,

I(z,y—1)I}/2,

L(x,y)= sing, {1z + 1,y)— Iz, y)|+ I{z,y)—

I(z,y)= sing, {I(z,y+1)—I(z, )+ Hz,y)—
He+1,y)— Ilz—1,y)+ e,
He+Ly) —Ia—1,9)+¢] ©
[(m y+1)— Iz, y— 1)+
[(z y+1)— I(z,y—1)

= (Hz,y)— I{z—1,y) +e)e, (7)

sign,=

= (Iz,y) — Iz, y—1) +e)e,

@
<.
o
:3

+e|

where sign and sign, represent the direction of convent-
ional gradients, and ¢, and ¢, are introduced to define the sign
when the point is on a peak or a valley. Note that a very small
value of ¢ prevents the denominator from becoming zero for a
pixel located in a homogeneous region. For a pixel residing in
a monotonically decreasing or increasing area, the new
definition provides the same sign and magnitude of gradients
as the conventional definition. For a peak or a valley, however,
the new definition still provides a non-zero magnitude, which
corresponds to average intensity variation, with a proper sign.

Fig. 8 demonstrates the tangential edge direction for pixels
in an LL, image. Fig. 8(a) shows, as expected, that the conve-
ntional method generates many wrong edge directions; in
contrast, as in Fig.8(b), the proposed method provides fairly
correct edge directions, even in peak or valley points.

C. Filtering phase

In the filtering phase, we perform the speckle reduction and
edge enhancement at each resolution level, on the basis of the
edge information obtained in the previous analyzing phase.
The speckle reduction is conceptually an edge-excluded low-
pass filtering procedure. The edge enhancement procedure
uses directional filtering to improve edge continuity and to

() (o)

Fig. 8. Eigenvectors of the tangential direction obtained by (a) the conventional

gradient calculation method and (b} the proposed method



enhance edge contrast.

We now describe the two filtering procedures in detail.
With respect to the reduction of speckle noise in each level of
the wavelet, speckle noise is usually modeled as multiplicative
noise. In practical ultrasound images, however, speckle noise
can be considered additive white noise because the images are
log-compressed in a conventional ultrasound scanner. Low-
pass filtering is the general method for removing the additive
white noise. And it is well known that low-pass filtering can
be achieved in a wavelet domain if we eliminate or properly
reduce the wavelet coefficients in the HL, LH, and HH bands.
Hence, by properly reducing only the wavelet coefficients that
correspond to the speckle noise, we can execute edge-excluded
filtering while preserving the wavelet coefficients that corre-
spond to the edges identified in the analyzing phase. Thus, in
contrast to convolution-based filtering, wavelet domain
filtering can easily exclude edges from low-pass filtering.

Physicians often dislike ultrasound images with considerably
lowered speckle noise. Hence, we properly reduce, rather than
completely eliminate, the wavelet coefficients that correspond
to speckle noise. For the low-pass filtering, we apply the
following reduction ratio R, (x, y) in relation to level I:

1 if El($,y)= 1,

RGw)- | ®

otherwise,

where k; denotes the reduction ratio and has a constant value.
The speckle reduction ratios are heuristically determined on
the basis of subjective quality tests. Fig. 9(a) shows the 1-D
frequency response at each level of a three-level wavelet
transform. By properly selecting reduction ratios according to
the level, we can easily apply various filters. Fig.9(b) shows
the frequency response of the low-pass filter by using the
reduction ratios adopted in this paper. Because the speckle
noise components that are decomposed into high levels of
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Fig. 9. (a) One-dimensional frequency response at each level of the three-
level wavelet transform. (b) One-dimensional frequency response of a
speckle reduction filter. The filtering is performed by weighting the
wavelet coefficients in the third, second, and first levels with different
weighting factors. In these graphs, the Daubechies’ Symmlet 8 is used
for the wavelet transform.
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coarse resolution generate more annoying noise patterns than
those that are decomposed into low levels of fine resolution,
we attenuate the components in the third level more than the
components in the other levels.

For the edge enhancement in the second procedure, we
perform a directional filtering process, which consists of
directional smoothing along the tangential direction of an edge
and directional sharpening along its normal direction. The
directional filtering improves the edge continuity and the
directional sharpening enhances the contrast. When enhancing
the contrast, we should prevent the noise from being amplified.
We may therefore need to perform the edge enhancement only
in the LL band images at all levels of wavelet decomposition
where the images are less affected by noise. During the edge
enhancement, however, undesirable aliasing artifacts can be
introduced if the filtering is applied only to the L band. As
mentioned in Section II-A, we cannot compensate for, or
eliminate, the aliasing that comes from non-ideal short-tap
wavelet filters or the corresponding artifacts if the frequency
characteristic that corresponds to our filtering process is not
symmetric between the L and H bands. To alleviate this
problem, we perform the filtering in both the L and H bands, to
ensure the symmetry of the resulting frequency characteristics
of the two filtering processes.

Fig. 10 shows that the edge sharpening process has a
symmetric frequency characteristic. If the same filter kernel is
applied to both the L and H bands in the 1-D one-level wavelet
transform domain, respectively, the frequency characteristics
in the L and H bands can be represented as in Fig. 10(a) and
(b), respectively. Because the frequency spectrum in the H
band is a reversely stretched version of the corresponding
range of the signal spectrum (see Fig. 6), the sharpening kernels
applied to the L and H band signals can be interpreted as a
sharpening filter, as illustrated in Fig. 10(c), for the recons-
tructed signal. Note in the graph that the frequency response

L band H band

0 T 0 T 0 w/2 T

L band Hband

Fig. 10. Frequency characteristics of a sharpening kernel in (a) the L band
and (b) the H band of the 1-D one-level wavelet domain. (c) The
frequency characteristic corresponding to the reconstructed signal.
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that corresponds to this filter process is symmetric at w = 7/2.
Hence, we can expect that the aliasing artifact is negligible
after the filtering.

The smoothing process in the wavelet transform domain
can be interpreted in the same manner as in the sharpening
process. On the basis of this observation, we perform the same
directional filtering in the four bands of LL, HL, LH, and HH
rather than only in the LL band, thereby reducing the aliasing
artifacts due to filtering. Note that we sequentially repeat this
filtering process starting from the highest wavelet level.

Fig. 11 illustrates the overall directional filtering process.
The two eigenvectors of a pixel on an edge represent the
tangential and normal directions of the edge. By applying
three-tap smoothing and sharpening kernels, namely [w, 1-2
wy, w] and [—w, 142w, w,], along the tangential and
normal directions, respectively, we can rewrite the overall
filtering procedure as

[l:(1_2wt+2wn)'[+wt'(1tl+[tz)"’wn'(lnl"'lm)’ (9)

where [is the original pixel value at point P, in the image, 7’
is filtered value of the original pixel, and 1, Z,, 7,;, and I ,
denote the pixel values at points 7,;, P,,, P,;, and P,,,
respectively. Note that by changing the filter coefficients w,
and w,, we can adjust the degree of filtering. For example, if
we use a large w, and w,,, we can achieve strong filtering.
When calculating the pixel values 4, Z,, Z,;, and I, for

the filtering, we need an interpolation procedure in the wavelet
transform band. For linear interpolation in the L band, we use
a triangular low-pass filtering kernel. For the H band, we use
its high-pass filtering version for the interpolation because the

Eigenvectors

Fig. 11, Directional filtering
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frequency components are inversely distributed as shown in
Fig. 6. If we consider 2-D interpolation in the LH band, for
example, the low-pass filtering kernel is to be applied for
interpolation along the = direction and its corresponding high-
pass filtering kernel along the y direction.

Because a point on an edge has an anisotropic diffusion
nature, the difference between two eigenvalues becomes large.
By normalizing the difference with the sum of two eigenv-
alues, we can represent the degree of diffusion anisotropy with
values between 0 and 1, regardless of their magnitudes.
Accordingly, we set the filter coefficients by using the
following equations so that stronger filtering kernels may be
applied for a more clearly defined edge:

w,= w, .. (M1_N2 )’
T L+
(10)
R (ﬁ__/‘)
A VP

where w; ., and w denote the maximum values of w,

n,max

and w,,, respectively.

lll. EXPERIMENTAL RESULTS

We compare the proposed algorithm with two existing
algorithms that are the NCD model-based method [8] and the
WSCE method [13]. For the experimental images, we use
scan-converted ultrasound images acquired from a convex or a
linear probe. We empirically choose all the parameters needed
for the experiment. First, we sct the level of the wavelet
transform to 3. We then set the three thresholding parameters

(c) (d)
Fig. 12, Experimental results for a liverimage. (a) Original image, and (b), (c),
(d) the images processed by using the NCD model-based, WSCE,
and proposed algorithms, respectively.
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Fig. 13. Experimental results for a gallbladder image. (a) Original image, and
(b), (c), (d) the images processed by using the NCD model-based,
WSCE, and proposed algorithms, respectively.

of (5), namely 7h,, Th,, and Ths, to 1500, 3000, and 6000,
respectively. Next, we set the speckle reduction ratios for the
low-pass filtering, namely k,, k,, and k, of (8), to 0.7, 0.7,
and 0.5, respectively and finally we set the parameters for the
directional filtering, w; ,,,, and w,, ..., to a common value
of 0.2 for all levels. For computational simplicity, we use
Daubechies four-tap filters for the wavelet transform because
we can hardly see any aliasing or ringing artifacts in the
images due to the short tap filters.

Fig. 12 shows the experimental results for a liver image
captured from a convex probe. The results of the NCD
method, which are shown in Fig. 12(b), indicate enhanced
structures and a significant reduction of speckle noise. But
some details are lost and some details are over-enhanced. The
results of the WSCE method, which are shown in Fig. 12(c),
indicate that the speckle noise is reduced relatively well, but

Table 1, Blind test results for the subjective quality of processed images
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Fig, 14, Experimental results for a breast image. (a) Original image, and (b},
(c), (d) the images processed by using the NCD model-based,
WSCE, and proposed algorithms, respectively.

the structures are blurred and some visible artifacts are
introduced. These unwanted effects occur because the thresh-
olding technique in the wavelet shrinkage scheme reduces the
sharpness of structures together with speckle noise. We note
also that the images in (b) and (c) look artificial due to the
speckle noise reduction. Meanwhile, Fig. 12(d) shows that the
speckle noise is partially reduced in the results of the proposed
algorithm, indicating that the subjective quality has not been
degraded and that the structures have been enhanced without
any noticeable loss or artifact. In addition, the edge orient-
ations are maintained and the edge continuities are improved.

Fig. 13 shows the experimental results for a gallbladder
image, and these results show a similar tendency to the results
in Fig. 12. Notice also that the structure boundaries in Fig.
13(d) are clearer than those in Figs. 13(b) and 13(c). Fig. 14
depicts the experimental results for an image of an abnormal

Score ; T
‘ Stondard deviation

. Mean
NCD 1.47 0.50
Liver WSCE 1.53 0.50
Proposed 3.00 0.00
NCD 2.00 0.00
Gallbladder WSCE 1.00 0.00
Proposed 3.00 0.00
NCD 1.88 0.29
Breast WSCE 1.12 0.29
Proposed 3.00 0.00
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breast; in this case, the image was captured from a linear
probe. The breast image differs from that of the liver image:
that is, the breast image has fewer homogeneous regions and
its edges are denser. As shown in Fig. 14(b), the NCD method
reduces the speckle noise well but the image looks artificial
due to blurring; in addition, some edges are lost and some are
over- enhanced along the unwanted direction. The WSCE
method, on the other hand, as shown in Fig. 14(c), blurs edges
as well as speckle noise. The results of the proposed
algorithm, which are shown in Fig. 14(d), reveal that the edges
are enhanced in terms of continuity and contrast while the
speckle noise is reduced.

To evaluate the performance in terms of subjective quality,
we conduct blind tests with a group of 16 clinical experts. The
best result is indicated by a score of 3 and the worst result by a
score of 1; the final scores are averaged. The results in Table 1
demonstrate that the proposed algorithm provides the best
subjective quality.

IV. DISCUSSION

In this paper, we focus on the subjective quality improv-
ement of ultrasound images rather than the objective quality.
Ultrasound images can be improved by enhancing edges and
reducing speckle noise. Hence, the discrimination of edges
from speckle noise is essential. As shown in the experimental
results in section III, however, the NCD method cannot
discriminate edges of low resolution from speckle noise. As a
result, edges are blurred. The WSCE method is neither good
enough for discriminating wavelet coefficients of edges from
those of speckle noise. Thus it also blurs edges while remaining
speckle noise. Moreover, the method introduces noticeable
artifact caused from improper modification of wavelet coeffic-
ients. Meanwhile, the proposed algorithm can extract appro-
priate edges in the LL bands of different resolutions in the
wavelet transform. As a result, unwanted blurring of edges is
prohibited. The algorithm enhances the properly selected
edges in terms of continuity and contrast by using directional
filtering.

Existing methods focus on speckle noise elimination without
considering the subjective image quality. Thus, processed
images look artificial. Meanwhile, the proposed algorithm
mainly reduces annoying speckle patterns rather than speckle
noise, thereby improves the subjective quality. It should be
noted in Table 1 that the proposed algorithm scores the best
for all images, because it provides comfortable images to
clinical experts by properly enhancing edges and reducing
speckle noise with no loss of details and no noticeable
artifacts.
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On the other hand, the proposed algorithm requires several
parameters to be chosen manually. However, since ultrasound
image characteristics are very similar for a given organ, we
can use the same parameters once they are determined.

V. CONCLUSION

We present an ultrasound image enhancement algorithm
based on a wavelet transform. In ultrasound images, edges
have various transitions because of changes in resolution
along the depth axis. We therefore adopted a multi-resolution
approach to effectively determine the edges of various trans-
itions. In ultrasound images with a low SNR, the speckle
energy is comparable to the signal energy in a wide range of
frequency bands. Thus, it is not easy to discriminate speckle
noise from the signal if we use only the magnitude statistics of
the wavelet coefficients of decomposed images. In the proposed
algorithm, to effectively discriminate speckle from the signal,
we obtain the structural information from wavelet-decomposed
LL band images by performing eigen-analysis at each wavelet
level. On the basis of the structural information, we can then
adaptively apply directional filtering and speckle reduction
procedures to LL, LH, HL, and HH band images in all the
wavelet levels. The experimental results show that the proposed
algorithm considerably improves the subjective image quality
without generating any noticeable artifacts, and provides
better performance than the existing representative enhancement
schemes. On a PC with a Pentium IV 2.8GHz CPU and 1GB
memory, the computational time for an image of 512 x 440 is
about 40ms, which is considered adequate for a real-time
application.
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