• Title/Summary/Keyword: edge feature

Search Result 566, Processing Time 0.041 seconds

Application of An Adaptive Self Organizing Feature Map to X-Ray Image Segmentation

  • Kim, Byung-Man;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1315-1318
    • /
    • 2003
  • In this paper, a neural network based approach using a self-organizing feature map is proposed for the segmentation of X ray images. A number of algorithms based on such approaches as histogram analysis, region growing, edge detection and pixel classification have been proposed for segmentation of general images. However, few approaches have been applied to X ray image segmentation because of blur of the X ray image and vagueness of its edge, which are inherent properties of X ray images. To this end, we develop a new model based on the neural network to detect objects in a given X ray image. The new model utilizes Mumford-Shah functional incorporating with a modified adaptive SOFM. Although Mumford-Shah model is an active contour model not based on the gradient of the image for finding edges in image, it has some limitation to accurately represent object images. To avoid this criticism, we utilize an adaptive self organizing feature map developed earlier by the authors.[1] It's learning rule is derived from Mumford-Shah energy function and the boundary of blurred and vague X ray image. The evolution of the neural network is shown to well segment and represent. To demonstrate the performance of the proposed method, segmentation of an industrial part is solved and the experimental results are discussed in detail.

  • PDF

Saliency Map Creation Method Robust to the Contour of Objects (객체의 윤곽선에 강인한 Saliency Map 생성 기법)

  • Han, Sung-Ho;Hong, Yeong-Pyo;Lee, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.10 no.3
    • /
    • pp.173-178
    • /
    • 2012
  • In this paper, a new saliency map generation method is discussed which extracts objects effectively using extracted Salient Region. Feature map is constructed first using four features of edge, hue of HSV color model, focus and entropy and then conspicuity map is generated from Center Surround Differences using the feature map. Final saliency map is constructed by the combination of conspicuity maps. Saliency map generated using this procedure is compared to the conventional technique and confirmed that new technique has better results.

Robust Facial Expression Recognition Based on Local Directional Pattern

  • Jabid, Taskeed;Kabir, Md. Hasanul;Chae, Oksam
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.784-794
    • /
    • 2010
  • Automatic facial expression recognition has many potential applications in different areas of human computer interaction. However, they are not yet fully realized due to the lack of an effective facial feature descriptor. In this paper, we present a new appearance-based feature descriptor, the local directional pattern (LDP), to represent facial geometry and analyze its performance in expression recognition. An LDP feature is obtained by computing the edge response values in 8 directions at each pixel and encoding them into an 8 bit binary number using the relative strength of these edge responses. The LDP descriptor, a distribution of LDP codes within an image or image patch, is used to describe each expression image. The effectiveness of dimensionality reduction techniques, such as principal component analysis and AdaBoost, is also analyzed in terms of computational cost saving and classification accuracy. Two well-known machine learning methods, template matching and support vector machine, are used for classification using the Cohn-Kanade and Japanese female facial expression databases. Better classification accuracy shows the superiority of LDP descriptor against other appearance-based feature descriptors.

A method for underwater image analysis using bi-dimensional empirical mode decomposition technique

  • Liu, Bo;Lin, Yan
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • Recent developments in underwater image recognition methods have received large attention by the ocean engineering researchers. In this paper, an improved bi-dimensional empirical mode decomposition (BEMD) approach is employed to decompose the given underwater image into intrinsic mode functions (IMFs) and residual. We developed a joint algorithm based on BEMD and Canny operator to extract multi-pixel edge features at multiple scales in IMFs sub-images. So the multiple pixel edge extraction is an advantage of our approach; the other contribution of this method is the realization of the bi-dimensional sifting process, which is realized utilizing regional-based operators to detect local extreme points and constructing radial basis function for curve surface interpolation. The performance of the multi-pixel edge extraction algorithm for processing underwater image is demonstrated in the contrast experiment with both the proposed method and the phase congruency edge detection.

Design and Simulation of Edge Painting Machine for Image Rasterization (Image rasterization을 위한 Edge Painting Machine의 설계 및 simulation)

  • Choi, Sang-Gil;Kim, Sung-Soo;Eo, Kil-Su;Kyung, Chong-Min
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1492-1494
    • /
    • 1987
  • This paper describes a hardware architecture called Edge Painting Machine for real time generation of scan line images for raster scan graphics display. The Edge Painting Machine consists of Scanline Processor which converts polygon data sorted in their depth priority into a set of scan line commands for each scan line, and Edge Painting Tree which converts the scanline commands set into a raster line image. Edge painting tree has been designed using combinational logic circuit. The designed circuit has been simulated to verify the proper functioning. A salient feature of the EPT is that hardware composition is simple, because each processor is constituted by only combinational logic circuit.

  • PDF

A New Interpretation of the Compass Gradient Edge Operators (Compass Gradient Edge 연산자의 새로운 해석방법)

  • Park, Rae-Hong;Choi, Woo Young
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.1
    • /
    • pp.97-101
    • /
    • 1987
  • The edge, a discontinuity or abrupt change in the gray-level or color, is a fundamentally important primitive feature of an image necessary for the image analysis and classification. Two-dimensional 3x3 compass gradient operators (ex. Sobel, Prewitt, and Kirsch operators)are commonly used in the edge detection and usually detect 8 compass directional components. In this paper, we present a new interpretation of the relationships between the resulting 8 gradient magnitudes and the 8 intensity values of neighboring pixels which are covered by the two-dimensional 3x3 mask. It is expected that a new gradient edge operator may be designed by changing the eigenvalues in the transform domain and the fast optical edge operator may be implemented by using the optical system.

  • PDF

Video Scene Detection using Shot Clustering based on Visual Features (시각적 특징을 기반한 샷 클러스터링을 통한 비디오 씬 탐지 기법)

  • Shin, Dong-Wook;Kim, Tae-Hwan;Choi, Joong-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.47-60
    • /
    • 2012
  • Video data comes in the form of the unstructured and the complex structure. As the importance of efficient management and retrieval for video data increases, studies on the video parsing based on the visual features contained in the video contents are researched to reconstruct video data as the meaningful structure. The early studies on video parsing are focused on splitting video data into shots, but detecting the shot boundary defined with the physical boundary does not cosider the semantic association of video data. Recently, studies on structuralizing video shots having the semantic association to the video scene defined with the semantic boundary by utilizing clustering methods are actively progressed. Previous studies on detecting the video scene try to detect video scenes by utilizing clustering algorithms based on the similarity measure between video shots mainly depended on color features. However, the correct identification of a video shot or scene and the detection of the gradual transitions such as dissolve, fade and wipe are difficult because color features of video data contain a noise and are abruptly changed due to the intervention of an unexpected object. In this paper, to solve these problems, we propose the Scene Detector by using Color histogram, corner Edge and Object color histogram (SDCEO) that clusters similar shots organizing same event based on visual features including the color histogram, the corner edge and the object color histogram to detect video scenes. The SDCEO is worthy of notice in a sense that it uses the edge feature with the color feature, and as a result, it effectively detects the gradual transitions as well as the abrupt transitions. The SDCEO consists of the Shot Bound Identifier and the Video Scene Detector. The Shot Bound Identifier is comprised of the Color Histogram Analysis step and the Corner Edge Analysis step. In the Color Histogram Analysis step, SDCEO uses the color histogram feature to organizing shot boundaries. The color histogram, recording the percentage of each quantized color among all pixels in a frame, are chosen for their good performance, as also reported in other work of content-based image and video analysis. To organize shot boundaries, SDCEO joins associated sequential frames into shot boundaries by measuring the similarity of the color histogram between frames. In the Corner Edge Analysis step, SDCEO identifies the final shot boundaries by using the corner edge feature. SDCEO detect associated shot boundaries comparing the corner edge feature between the last frame of previous shot boundary and the first frame of next shot boundary. In the Key-frame Extraction step, SDCEO compares each frame with all frames and measures the similarity by using histogram euclidean distance, and then select the frame the most similar with all frames contained in same shot boundary as the key-frame. Video Scene Detector clusters associated shots organizing same event by utilizing the hierarchical agglomerative clustering method based on the visual features including the color histogram and the object color histogram. After detecting video scenes, SDCEO organizes final video scene by repetitive clustering until the simiarity distance between shot boundaries less than the threshold h. In this paper, we construct the prototype of SDCEO and experiments are carried out with the baseline data that are manually constructed, and the experimental results that the precision of shot boundary detection is 93.3% and the precision of video scene detection is 83.3% are satisfactory.

Effect of Calcium Carbonate on Properties of Paper in Alkali Paper Masking (중성초지에서 탄산칼슘의 성질이 종이의 물성에 미치는 영향)

  • 신종순
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.8 no.1
    • /
    • pp.71-87
    • /
    • 1990
  • This paper presents a simple algorithm to obtain three dimensional information of an object. In the preprocessing of the stereo matching,feature point informations of stero image must be less sensitive to noise and well liked the correspondance problem. This paper described a simple technique of struture feature extraction of 3-D object and used edge-end point expanding method for unconnected line instade of Hough transform. The feature such as corner point and their angles are used for matching problem. The experimental results show that the described algorithm is a useful method for stereo correspondence problem.

  • PDF

Extraction of Feature Points Using a Line-Edge Detector (선경계 검출에 의한 특징점 추출)

  • Kim, Ji-Hong;Kim, Nam-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1427-1430
    • /
    • 1987
  • The feature points of an image play a very important role in understanding the image. Especially, when an image is composed of lines, vertices of the image offer informations about its property and structure. In this paper, a series of process for extracting feature points from actual IC image is described. This result can be used to acquire CIF ( Caltech Intermediate Form ) file.

  • PDF

Character recognition using Hough transform (Hough변환을 이용한 문자인식)

  • 강선미;김봉석;황승옥;양윤모;김덕진
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1991.10a
    • /
    • pp.77-80
    • /
    • 1991
  • This paper proposes a new feature extraction method which is effectively used in character recognition, and validate the effectiveness through various computational methods for similiarity degree. To get feature vectors used in this method, Hough transform is applied to character image, which is used for edge extraction in image processing. By that transformation technique, strokes could be extracted and feature vectors constructed suitably. The characteristic of this method is solving the difficulties in stroke extraction through transform space analysis, which is induced by noise and blurring, and representing high recognition rate 99.3% within 10 candidates in relative low dimension.