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Automatic facial expression recognition has many 
potential applications in different areas of human 
computer interaction. However, they are not yet fully 
realized due to the lack of an effective facial feature 
descriptor. In this paper, we present a new appearance-
based feature descriptor, the local directional pattern 
(LDP), to represent facial geometry and analyze its 
performance in expression recognition. An LDP feature is 
obtained by computing the edge response values in 8 
directions at each pixel and encoding them into an 8 bit 
binary number using the relative strength of these edge 
responses. The LDP descriptor, a distribution of LDP 
codes within an image or image patch, is used to describe 
each expression image. The effectiveness of dimensionality 
reduction techniques, such as principal component 
analysis and AdaBoost, is also analyzed in terms of 
computational cost saving and classification accuracy. Two 
well-known machine learning methods, template 
matching and support vector machine, are used for 
classification using the Cohn-Kanade and Japanese 
female facial expression databases. Better classification 
accuracy shows the superiority of LDP descriptor against 
other appearance-based feature descriptors. 
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I. Introduction 

Facial expression provides the most natural and immediate 
indication about a person’s emotions and intentions [1], [2]. 
Therefore, automatic facial expression analysis is an important 
and challenging task that has had great impact in such areas as 
human-computer interaction and data-driven animation. 
Furthermore, video cameras have recently become an integral 
part of many consumer devices [3] and can be used for 
capturing facial images for recognition of people and their 
emotions. This ability to recognize emotions can enable 
customized applications [4], [5]. Even though much work has 
already been done on automatic facial expression recognition 
[6], [7], higher accuracy with reasonable speed still remains a 
great challenge [8]. Consequently, a fast but robust facial 
expression recognition system is very much needed to support 
these applications.  

The most critical aspect for any successful facial expression 
recognition system is to find an efficient facial feature 
representation [9]. An extracted facial feature can be considered 
an efficient representation if it can fulfill three criteria: first, it 
minimizes within-class variations of expressions while 
maximizes between-class variations; second, it can be easily 
extracted from the raw face image; and third, it can be 
described in a low-dimensional feature space to ensure 
computational speed during the classification step [10], [11]. 
The goal of the facial feature extraction is thus to find an 
efficient and effective representation of the facial images which 
would provide robustness during recognition process. Two 
types of approaches have been proposed to extract facial 
features for expression recognition: a geometric feature-based 
system and an appearance-based system [12].  

In the geometric feature extraction system, the shape and 
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location of facial components are considered, and geometric 
relationships between these components are used to form a 
feature vector. These geometric relationships may be example 
positions, distances, and angles. For instance, Zhang and others 
[13] used the geometric positions of 34 fiducial points as facial 
features to represent facial images. Another widely-used facial 
description is the Facial Action Coding System, where facial 
expressions are represented by one or more action units (AUs) 
[14]. Valstar and others [15], [16] presented detection by 
classifying features calculated from tracked fiducial facial 
points and urged that geometric approaches have similar or 
better performance than appearance-based approaches in facial 
expression analysis. However, geometric representation of 
facial geometry requires accurate and reliable facial component 
detection and tracking, which are difficult to accommodate in 
many situations [9]. 

The appearance-based system models the face images by 
applying an image filter or filter banks on the whole face or 
some specific regions of the face to extract changes in facial 
appearance. Principal component analysis (PCA) has been 
widely applied to extract features for face recognition [17], [18]. 
PCA is primarily used in a holistic manner. More recently, 
independent component analysis (ICA) [19], [20], enhanced 
ICA [3], and Gabor wavelet [21] have been utilized to extract 
facial feature either from whole-face or specific face regions 
for modeling facial changes. Donato and others [22] performed 
a comprehensive analysis of different techniques, including 
PCA, ICA, local feature analysis, and Gabor wavelet, to 
represent images of faces for facial action recognition and 
demonstrate that the best performance can be achieved by ICA 
and Gabor wavelet. However, convoluting a facial image with 
multiple Gabor filters of multiple scales and orientations makes 
the Gabor representation very intensive as regards time and 
memory. 

Among the appearance-based feature extraction methods, 
the local binary pattern (LBP) method which was originally 
introduced for the purpose of texture analysis [23] and its 
variants [24], [25] were used as a feature descriptor for facial 
expression representation [9]. The LBP method is 
computationally efficient and robust to monotonic illumination 
changes. However, it is sensitive to non-monotonic 
illumination variation and also shows poor performance in the 
presence of random noise [26], [27]. The local directional 
pattern (LDP) method, a more robust facial feature proposed 
by Jabid and others [27], demonstrated better performance for 
face recognition compared to LBP. In this work, we have 
analyzed the performance of the proposed LDP feature in 
characterizing different facial expression. We empirically study 
the effectiveness of facial image representation based on LDP 
for recognizing human expression. The performance of this 

representation is evaluated using template matching and 
support vector machine (SVM). Extensive experiments with 
two widely-used expression databases, namely, the Cohn-
Kanade (CK) facial expression database [28] and the Japanese 
female facial expression (JAFFE) database [21], demonstrate 
that the LDP feature is more robust in extracting the facial 
features, and it is also superior in classifying expressions 
compared to LBP and Gabor wavelet features. We also find 
that the LDP method performs stably and robustly over a 
useful range of lower resolution face images.  

II. LBP 

The LBP operator, a gray-scale invariant texture primitive, 
has gained significant popularity for describing the texture of 
an image [26]. It labels each pixel of an image by thresholding 
its P-neighbor values with the center value and converts the 
result into a binary number by using 
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where gc denotes the gray value of the center pixel (xc, yc) and 
gp corresponds to the gray values of equally spaced pixels P on 
the circumference of a circle with radius R. 

The values of neighbors which do not fall exactly on pixel 
position are estimated by bilinear interpolation. In practice, (1) 
means that the signs of the differences in a neighborhood are 
interpreted as a P-bit binary number, resulting into 2P distinct 
values for the binary pattern. This individual pattern value is 
capable of describing the texture information at the center pixel 
gc. The process of generating this P-bit pattern is shown in  
Fig. 1. 

One variation of the original LBP, known as uniform LBP, is 
proposed from the observation that certain LBPs appear more 
frequently in a significant image area. These patterns are 
considered uniform because they contain very few transitions 
from 0 to 1 or 1 to 0 in a circular bit sequence. For example, the 
patterns 00000000 and 11111111 have zero transitions, 
00011000 has two transitions, and 10001101 has four 
transitions. Shan and others [2] used this variant of the LBP, 
which has at most two transitions (LBPu2), for their facial 

 

 

Fig. 1. Basic LBP operator. 
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expression recognition task. Though the LBP shows good 
recognition accuracy in a constraint environment, it is sensitive 
to random noise and non-monotonic illumination variation. 

III. LDP 

An LBP operator encodes the micro-level information of 
edges, spots, and other local features in an image using 
information of intensity changes around pixels. Some 
researchers apply the LBP operator on gradient image to 
encode the texture [29], [30]. These variations simply replace 
the intensity value with the gradient magnitude value of that 
pixel. Then the LBP code is calculated trivially. Lack of 
robustness of those methods can be alleviated by encoding the 
edge response in a different direction from a pixel. Being 
motivated by this, we propose LDP that computes the edge 
response values in different directions and uses these to encode 
the image texture. Since the edge responses are less sensitive to 
illumination and noise than intensity values, the resultant LDP 
feature describes the local primitives, including different types  
 

 

Fig. 2. Kirsch edge masks in all eight directions. 

0 1 2 3

3 3 5 3 5 5 5 5 5 5 5 3
3 0 5 3 0 5 3 0 3 5 0 3
3 3 5 3 3 3 3 3 3 3 3 3
East North east North North west

5 3 3 3 3 3 3 3 3
5 0 3 5 0 3 3 0 3
5 3 3 5 5 3 5 5 5

M M M M

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − − − − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

− − − − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢− − − −⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

4 5 6 7

3 3 3
3 0 5
3 5 5

West South west South South eastM M M M

− − −⎡ ⎤
⎥ ⎢ ⎥−⎥ ⎢ ⎥
⎥ ⎢ ⎥−⎣ ⎦

 
 

 

Fig. 3. (a) 8-directional edge response positions and (b) LDP
binary bit positions. 
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Fig. 4. LDP code with k =3. 
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of curves, corners, and junctions, in a more stable manner and 
also retains more information. 

The proposed LDP method assigns an 8 bit binary code to 
each pixel of an input image. This pattern is then calculated by 
comparing the relative edge response values of a pixel in 
different directions. The Kirsch, Prewitt, and Sobel edge 
detectors are some of the different representative edge detectors 
which can be used in this regard. The Kirsch edge detector [31] 
detects different directional edge responses more accurately 
than the others because it considers all 8 neighbors [32]. Given 
a central pixel in the image, the eight-directional edge response 
values {mi}, i=0, 1,…, 7 are computed by Kirsch masks, Mi, in 
eight different orientations centered on the pixel’s position. 
These masks are shown in the Fig. 2. 

The response values are not equally important in all 
directions. The presence of a corner or an edge shows high 
response values in some particular directions. Therefore, we 
need to know the most prominent k directions to generate the 
LDP. Here, the top-k directional bit responses, bi, are set to 1. 
The remaining 8 k bits of the 8 bit LDP pattern are set to 0. 
Finally, the LDP code is derived by  
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where mk is the k-th most significant directional response. 
Figure 3 shows the mask response and LDP bit positions, and 
Fig. 4 shows an exemplary LDP code with k=3. 

1. Robustness of LDP 

Since edge responses are more stable than intensity values, 
LDP provides the same pattern value even if there is some 
presence of noise and non-monotonic illumination changes. 
For instance, Fig. 5 shows a small image patch, before and 
after adding Gaussian white noise. After the addition of noise, 
the 5th bit of the LBP has changed from 1 to 0. Thus, the LBP 
pattern is changed from uniform to non-uniform code. Since 
edge response values are more stable than gray values, LDP 
provides the same pattern value under the same noise and non-
monotonic illumination changes. In addition to this, an 
extensive demonstration has been reported [33] where the LDP  
 

 

Fig. 5. Stability of LDP vs. LBP: (a) original LBP and LDP values 
of image patch and (b) LBP and LDP values of image 
patch with noise. 
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Fig. 6. Expression image is divided into small regions from
which LDP histograms are extracted and concatenated
into LDP descriptor. 
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robustness is proved by analyzing with a set of image patches. 

2. LDP Descriptor 

After computing all the LDP code for each pixel (r, c), the 
input image I of size M×N is represented by an LDP histogram, 
H, using  
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where i is the LDP code value. The resulting histogram H is the 
LDP descriptor of that image. For a particular value of k, the 
histogram H has 8

kC number of bins. The resultant LDP 
histogram describes a local region similar to that of scale 
invariant feature transform (SIFT) feature [34]. SIFT is a 
histogram of gradient orientations, whereas the proposed LDP 
descriptor is a histogram of encoded gradient values. 

LDP descriptor contains detail information of an image, such 
as edges, spot, corner, and other local texture features. However, 
a descriptor computed over the whole face image encodes only 
the occurrences of the micro-patterns without any knowledge 
about their locations. However, for face images, some degree 
of locations and spatial relationship represents the image 
content better [35], [36]. Consequently, we modified the 
histogram to an extended histogram, where the image is 
divided into g regions R0, R1,…, Rg–1 as shown in Fig. 6, and 
the LDPi histogram is built for each region Ri. Finally, 
concatenating all the basic LDPi distributions yields the LDP 
descriptor. 

IV. Feature Dimensionality Reduction 

An effective feature vector should contain only the essential 
information which carries higher discriminating capacity to 
formulate the classification task easily. Though inadequate 
features normally lead to a failure with a good classifier, having 
too many features may again increase time and space 

complexities with no guaranteed advantage in the classification 
process. Therefore, dimensionality reduction (DR) is an 
important step in solving the problem of dimensionality in an 
efficient manner [37]. DR techniques can be broadly clustered 
into two groups: techniques which transform the existing 
features to a newly reduced set of features and techniques 
which select a subset of existing features. In this paper, PCA 
and AdaBoost techniques are employed which fall into first 
and second category, respectively. 

In PCA, eigenvectors or principal components (PCs) are 
computed from the covariance data matrix. Then, each input 
feature is approximated by a linear combination of the top-
most few eigenvectors. These weight coefficients form a new 
representation of the feature vector. The matrix represents the 
eigenspace defined by all the eigenvectors, and each 
eigenvalue defines its corresponding axis of variance. Usually, 
some eigenvalues are close to zero and can be discarded as 
they do not contain much information. The selected 
eigenvectors associated with the top eigenvalues define the 
newly reduced subspace. The LDP feature vector, projected 
onto the new subspace defined by the top eigenvectors, found 
from PCA that few dimensions defined by eigenvalues 
contain significant amount of discriminative information. 
Thus, the principal component representation of facial 
expression image can be obtained with a lesser dimension 
LDP representation. 

AdaBoost [38] provides a simple yet effective approach for 
stage-wise learning of a nonlinear classification function. 
AdaBoost learns a small number of weak classifiers whose 
performance is just better than random guessing and boosts 
them iteratively into a strong classifier of higher accuracy. In 
our proposed LDP descriptor, classification capability of each 
bin is considered as a weak classifier. In each iteration, a weak 
classifier which minimizes the weighted error rate is selected, 
and the distribution is updated to increase the weights of the 
misclassified samples and reduce other weights. The basic 
form of AdaBoost is for two-class problems. A set of N labeled 
training examples is given as (x1, y1)…(xN, yN), where       
yi∈+1, –1 is the class label for the example xi ∈Rn. Both 6-class 
and 7-class expression recognition problems are multiclass 
problem; hence, we used the generalized multi-class multi-
label AdaBoost algorithm proposed in [39]. 

V. Facial Expression Recognition Using LDP 

Template matching, linear discriminant analysis, linear 
programming, and SVM are machine learning techniques 
available to classify facial expressions. A comparative analysis 
was carried out [9] with these techniques, and SVM perform 
the best. Accordingly, we verify the effectiveness of proposed  
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Fig. 7. (a) Facial image divided into 7×6 sub-regions and (b) 
weights assigned for the weighted χ2 measure. Black
indicates weight of 0.0, dark gray indicates 0.5, light gray
indicates 1.0, and white indicates 1.5. 
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facial feature in classifying expression using SVM. Besides this, 
we also employ template matching technique due to its 
simplicity. 

1. Template Matching  

A template for each class of expression images is formed to 
model that particular expression. During the training phase, the 
LDP histograms of expression images in a given class are 
averaged to generate the template model M. For recognition, a 
dissimilarity measure is evaluated against each template, and 
the class with the smallest dissimilarity value announces the 
match for the test expression, S. Chi-square statistic, χ2, is 
frequently used as the dissimilarity measure, but sometimes 
weighted 2

wχ statistics are used to give more or less importance 
to particular regions such as eye, nose, and mouth areas. In our 
case, we opted to use the weighted χ2 statistic for template 
matching, and adopted weights are shown in Fig. 7. 
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where wi is the weight of region Ri. 

2. SVM 

SVM theory is a well-established statistical learning theory 
that has been successfully applied in various classification tasks 
in computer vision [40]. SVM performs an implicit mapping of 
data into a higher dimensional feature space and finds a linear 
separating hyper-plane with maximal margin to separate the 
data. Given a training set of labeled examples 
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where αi are Lagrange multipliers of dual optimization problem, 
b is a bias or threshold parameter, and K is a kernel function. 

The training samples xi with αi > 0 are called the support 
vectors, and the separating hyper-plane maximizes the margin 
with respect to these support vectors. Among the various 
kernels found in the literature, linear, polynomial, and radial 
basis function (RBF) kernels are the most frequently used ones. 

SVM makes binary decisions, and multi-class classification 
can be achieved by adopting the one-against-rest or several 
two-class problems. In our work, we adopt the one-against-
rest technique, which trains a binary classifier for each 
expression to discriminate one expression from all others and 
outputs the class with the largest output. We carried out a 
grid-search on the hyper-parameters in a cross-validation 
approach for selecting the parameters, as suggested in [41]. 
The parameter setting producing the best cross-validation 
accuracy was picked. 

VI. Experimental Setup and Dataset Description 

Most facial expression recognition systems attempt to 
recognize a set of prototypic emotional expressions like anger, 
disgust, fear, joy, sadness, and surprise [9]. This 6-class 
expression set can also be extended as a 7-class expression set 
by including a neutral expression. In this work, our effort is 
devoted to recognize both 6-class and 7-class prototypic 
expressions. The performance of our proposed system is 
evaluated with the two well-known image datasets; namely, the 
CK facial expression database [28] and the JAFFE database 
[21].  

The CK database consists of 100 university students who at 
the time of their inclusion were between 18 to 30 years old; 
65% were female, 15% were African-American, and 3% were 
Asian or Latino. Subjects were instructed to perform a series of 
facial expression displays starting from neutral or nearly neutral 
to one of six target prototypic emotions. Image sequences from 
neutral to target display were digitized into 640×480 or 
640×690 pixel arrays of gray scale frames. In our setup, we 
selected 408 image sequences from 96 subjects, each of which 
was labeled as one of the six basic emotions. For 6-class 
prototypic expression recognition, the three most expressive 
image frames were taken from each sequence that resulted into 
1,224 expression images. In order to build the neutral 
expression set, the first frame (neutral expression) from all 408 
sequences was selected to make the 7-class expression dataset 
(1,632 images). Seven expression images, one from each 
prototypic expression from CK database, are displayed in   
Fig. 8(a). 

The JAFFE database contains only 213 images of female 
facial expressions expressed by 10 subjects. Each image has a 
resolution of 256×256 pixels with almost the same number of 
images for each categories of expression. The head in each  
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Fig. 8. Sample expression images of each prototypic expression 
from (a) CK database and (b) JAFFE database. 
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Fig. 9. Original face and cropped region as an expression image.
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image is usually in frontal pose, and the subject’s hair was tied 
back to expose all the expressive zones of her face. Tungsten 
lights were positioned to create an even illumination on the 
face. The actual names of the subjects are not revealed, but they 
are referred with their initials: KA, KL, KM, KR, MK, NA, 
NM, TM, UY, and YM. Figure 8(b) refers to the seven 
prototypic expressions of the person with initial KA. 

After choosing the images, they were cropped from the 
original one using the positions of two eyes and resized into 
150×110 pixels. For the CK database, the ground-truth of eye 
position data is provided. For other image databases, an 
existing eye detection technique that provides good detection 
accuracy [42] was used. Automatic face cropping and resizing 
have been done with the position of both eyes in such a way 
that they are a distance, D, apart. A distance of 0.5 D between 
the boundaries of both eyes has been maintained. The height of 
the image is 2.7 D with level of eye located 2 D apart from 
bottom boundary as shown in Fig. 9. No further alignment of 
facial features such as alignment of mouth was performed in 
our algorithm. Since LDP is robust in illumination change, no 
attempt was made to remove illumination changes. In our 
experiment, we carried out a 7-fold cross-validation scheme 
where each dataset is randomly partitioned into seven groups 
separately. Six groups were used as a training dataset to train 
the classifiers or model their templates, while the remaining 
groups were used as testing datasets. The above process was 
repeated seven times, and the average recognition rate was 
calculated. 

VII. Result and Discussion 

In this section, we show how we first tried to find the optimal 
parameter settings for LDP-based facial image representation. 
These optimal parameter settings are employed for the facial 
image representation, and the classification performance is 
analyzed with images from the CK and JAFFE databases. The 
effects of the DR technique are also discussed. Finally, the 
robustness of proposed method is presented for recognizing a 
variety of lower resolution expression images. 

1. Determining Optimal LDP Parameters 

The recognition accuracy of the proposed method can be 
influenced by adjusting two parameters: the number of 
prominent directions used to encode in the LDP pattern and the 
number of regions into which the image is divided. In order to 
determine the optimal values of these two parameters, we first 
fixed the number of regions, g, and found the optimal value for 
k. It may be noted that k=1 gives the symmetric descriptor as 
k=7 because 8 8

1 7 .C C=  Therefore, the parameter k is verified 
with the value from {1, 2, 3, 4}. Next, with the determined k 
value, we searched for the optimal value for g, that is, the 
number of divided regions. In our experiment, we evaluate four 
different cases: 3×3, 5×5, 7×6, and 9×8. All these experiments 
are carried out with template matching using images from the 
CK database. 

Table 1 shows the performance for different k values with the 
facial images divided into 42 (7×6) regions. It can be observed 
that the best recognition rate is achieved when k=3. Though the  
 

Table 1. Recognition performance for different k. 

 
6-class 

expression (%) 
7-class 

expression (%) 
Vector length of 

LDP feature 
k = 1 80.1 78.1 336 

k = 2 86.4 84.0 1,176 

k = 3 89.2 86.9 2,352 

k = 4 87.7 86.0 2,940 

Table 2. Recognition performance for different number of regions.

 
6-class 

expression (%) 
7-class 

expression (%) 
Vector length of 

LDP feature 
g = 3×3 85.1 82.5 504 

g = 5×5 87.4 86.0 1,400 

g = 7×6 89.2 86.9 2,352 

g = 9×8 89.1 85.4 4,032 
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LDP descriptor’s dimension becomes higher with k=4, the 
recognition rate does not improve. This observation is in 
accordance with the fact that larger descriptor does not always 
contain more discriminative information. In order to determine 
the optimal number image division, images are sub-divided 
into 3×3, 5×5, 7×6, and 9×8 blocks. Table 2 lists the effect of 
different number of regions on the recognition performance. 
Having a small number of regions leads to a lower recognition 
rate (below 83%). While increasing the number of regions, the 
recognition performance starts to increase as the descriptor 
feature incorporates more local and spatial relationship 
information. However, after a certain point, too many sub-
regions incorporate unnecessary local information that might 
degrade the performance. From our observation, 7×6 regions 
provide optimal recognition performance. Therefore, we 
concluded that k=3 and g=7×6 are the optimal parameter 
values for the proposed LDP-based facial expression image 
representation. 

2. Recognition Performance Using the Optimal Parameters 

The optimal parameter values are employed in recognizing 
facial expression images, which were collected from the CK 
and JAFFE databases beforehand, and a better recognition rate 
conforms the efficiency of the proposed LDP-based method. 
The basic template matching technique provides a recognition 
accuracy of 89.2% and 86.9% in a 6-class and 7-class 
expression recognition problem, respectively, with images 
from the CK database, whereas with images from the JAFFE 
database, the same technique achieved an accuracy of 87.4% 
and 82.6%, respectively. Tables 3 and 4 provide results 

Table 3. Recognition performance with template matching using CK 
database. 

Feature descriptor 
6-class recognition 

(%) 
7-class recognition 

(%) 
Gabor [43] 83.7 ± 4.5 78.9 ± 4.8 

LBP [9] 84.5 ± 5.2 79.1 ± 4.6 

LDP 89.2 ± 2.5 86.9 ± 2.8 

Table 4. Recognition performance with template matching using 
JAFFE database. 

Feature descriptor 
6-class recognition 

(%) 
7-class recognition 

(%) 
Gabor [43] 81.9 ± 6.4 75.5 ± 5.8 

LBP [9] 83.7 ± 6.7 77.2 ± 7.6 

LDP 87.4 ± 5.6 82.6 ± 4.1 

 

Table 5. Expression recognition performance with different methods
using SVM on CK database. 

6-class expression 

Feature 
descriptor 

Liner 
kernels (%) 

Polynomial 
kernels (%) 

RBF 
kernels (%) 

Gabor [43] 89.4 ± 3.0 89.4 ± 3.0 89.8 ± 3.1 

LBP [9] 91.5 ± 3.1 91.5 ± 3.1 92.6 ± 2.9 

LDP 94.9 ± 1.2 94.9 ± 1.2 96.4 ± 0.9 

7-class expression 

Feature 
descriptor 

Liner 
kernels (%) 

Polynomial 
kernels (%) 

RBF 
kernels (%) 

Gabor [43] 86.6 ± 4.1 86.6 ± 4.1 86.8 ± 3.6 

LBP [9] 88.1 ± 3.8 88.1 ± 3.8 88.9 ± 3.5 

LDP 92.8 ± 1.7 92.8 ± 1.7 93.4 ± 1.5 

Table 6. Expression recognition performance with different methods
using SVM on JAFFE database. 

6-class expression 

Feature 
descriptor 

Liner 
kernels (%) 

Polynomial 
kernels (%) 

RBF 
kernels (%) 

Gabor [43] 85.1 ± 5.0 85.1 ± 5.0 85.8 ± 4.1 

LBP [9] 86.7 ± 4.1 86.7 ± 4.1 87.5 ± 5.1 

LDP 89.9 ± 5.2 89.9 ± 5.2 90.1 ± 4.9 

7-class expression 

Feature 
descriptor 

Liner 
kernels (%) 

Polynomial 
kernels (%) 

RBF 
kernels (%) 

Gabor [43] 79.7 ± 4.2 79.7 ± 4.2 80.8 ± 3.7 

LBP [9] 80.7 ± 5.5 80.7 ± 5.5 81.9 ± 5.2 

LDP 84.9 ± 4.7 84.9 ± 4.7 85.4 ± 4.0 

 

 
comparing LBP and Gabor features with the CK and JAFFE 
databases which clearly exhibit the superiority of the proposed 
LDP-based expression recognition system. 

SVM is a well-devised machine learning technique that 
provides excellent classification accuracy in pattern recognition. 
Therefore, we conducted the recognition using SVM with 
different kernels to classify the facial expressions. The 
comparative generalized performances with the SVM classifier 
based on different features are shown in Tables 5 and 6. It is 
observed that despite LDP representation having less feature 
dimensionality than LBP or Gabor representation, it performs 
more stably and robustly than both representations. 

So far, we have discussed the average recognition accuracy 
of several prototypic expressions. To get a better picture of the 
recognition accuracy of individual expression types, the 
confusion matrices (CMs) for 6-class and 7-class expression  
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Table 7. CM of 6-class expression recognition (%) using SVM on CK 
database. 

 Anger Disgust Fear Joy Sad Surprise

Anger 95.6 2.5 0.0 0.0 1.5 1.5 

Disgust 0.0 96.5 3.5 0.0 0.0 0.0 

Fear 1.5 0.0 96.0 2.5 0.0 0.0 

Joy 0.0 0.0 0.0 98.0 0.0 2.0 

Sad 0.5 1.5 0.0 0.0 98.0 0.0 

Surprise 0.0 0.0 0.0 3.0 0.0 97.0 

Table 8. CM of 7-class expression recognition (%) using SVM on CK 
database. 

 Anger Disgust Fear Joy Sad Surprise Neutral
Anger 86.9 0.9 0.9 0.0 0.0 0.9 10.4

Disgust 2.0 94.2 0.0 0.0 0.0 0.0 3.8
Fear 1.5 0.0 94.4 0.0 0.0 0.0 4.1
Joy 0.0 0.0 0.7 98.9 0.0 0.0 0.4
Sad 1.1 0.5 0.0 0.0 92.6 0.0 5.8

Surprise 0.0 0.0 0.0 0.0 0.0 99.0 1.0
Neutral 5.9 1.2 0.7 0.0 2.7 0.2 89.3

Table 9. CM of 6-class facial expression recognition (%) using SVM 
on JAFFE database. 

 Anger Disgust Fear Joy Sad Surprise

Anger 92.6 7.4 0.0 0.0 0.0 0.0

Disgust 4.9 85.3 0.0 0.0 9.8 0.0

Fear 0.0 0.0 90.4 0.0 4.8 4.8

Joy 0.0 0.0 0.0 95.8 2.1 2.1

Sad 4.5 10 0.0 0.0 83.2 0.0

Surprise 0.0 0.0 2.4 2.4 0.0 95.2

Table 10. CM of 7-class facial expression recognition (%) using SVM 
on JAFFE database. 

 Anger Disgust Fear Joy Sad SurpriseNeutral

Anger 94.3 5.7 0.0 0.0 0.0 0.0 0.0

Disgust 5.9 80.1 4.0 0.0 10.0 0.0 0.0

Fear 0.0 2.7 86.3 0.0 4.2 0.0 6.8

Joy 0.0 0.0 0.0 95.2 2.4 2.4 0.0

Sad 6.1 10.8 0.0 2.8 77.5 0.0 2.8

Surprise 0.0 0.0 3.5 3.5 0.0 89.6 3.4

Neutral 2.8 0.0 0.0 0.0 5.1 7.6 84.5

 
recognition with template matching using the CK database are 
given in Tables 7 and 8, respectively. As we include the neutral  

 

Fig. 10. Example images of disagreement. In the JAFFE database, 
the expressions are labeled (from left to right): sadness, 
surprise, and joy. However, the recognition results are joy, 
joy, and neutral, respectively. 

 
expression in the 7-class recognition problem, the accuracy of 
the other six expressions gets lower because some facial 
expression samples are confused with a neutral expression. The 
same recognition task is also carried with images from the 
JAFFE database, and results shown in Tables 9 and 10 further 
validate the strength of the LDP. 

We observed that recognition accuracy in JAFFE database is 
relatively lower than that of the CK database. One of the main 
reasons behind this is that some expressions in the JAFFE 
database had been labeled incorrectly or expressed inaccurately. 
Thus, depending on whether these expressional images are 
used for training or testing, the recognition result is influenced. 
Figure 10 shows examples of the labeled expressions and our 
recognition results which clarify this finding. 

3. Effect of Dimensionality Reduction 

In this subsection, we show that the feature dimension is 
reduced through PCA and AdaBoost. Then, the effect of this 
reduced feature on the recognition rate is analyzed. At first, the 
LDP descriptor is projected onto the subspace for DR as 
defined by the significant PCs from PCA. The dimension of 
the subspace determines the new feature vector’s dimension. 
As discussed before, only those dimensions which contain the 
most information are desired, and unnecessary elements should 
be discarded. In this subsection, the optimal number of PCs is 
determined, and the new feature space is found from those PCs. 
Figure 11 shows the recognition rate for a different number of 
PCs varying from 60 to 260. With 240 PCs, the projected 
features achieved a recognition performance of above 96% and 
93% for 6-class and 7-class facial expression recognitions, 
respectively. With a higher number of transformed features, the 
recognition rate shows almost a constant performance. 

We also analyzed the effect of feature dimension using 
AdaBoost. The LDP histogram generated from every sub-
region makes the feature vector long. A subset of features 
which has more discriminating capability to classify expression 
is selected using AdaBoost. During AdaBoost, training for each 
expression classifier continued until the distributions for the 
positive and negative samples were completely separated. The 



792   Taskeed Jabid et al. ETRI Journal, Volume 32, Number 5, October 2010 

 

Fig. 11. Recognition rate of prototypic facial expressions by
varying the number of features from PC subspace in
PCA. 
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Fig. 12. Recognition rate of prototypic facial expressions by
varying the number of features selected from boosting 
technique. 
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total number of features selected using this procedure was 230, 
and these selected features are used to further classify the 
expressions using SVM. The generalization performances in 6-
class and 7-class recognitions as a function of the number of 
selected features are shown in Fig. 12. 

4. Evaluation at Different Resolution 

In environments like smart meeting, visual surveillance, and 
old-home monitoring, only low-resolution video input is 
available [44]. Deriving AUs from such facial images are 
critical problems. In this subsection, we explore the recognition 
performance on low-resolution images with the LDP descriptor. 
Four different resolutions of face images were studied: 
150×110, 75×55, 48×36, and 37×27. Low-resolution images 
were formed by down-sampling the original images. All face 
images were divided into 42 (7×6) regions for building the 
LDP descriptor. To compare with the methods based on LBP 
and Gabor wavelet features, we conducted similar experiments  

Table 11. Recognition performance in low-resolution facial (CK 
database) images. 

 150×110 75×55 48×36 37×27 

Feature 

  
Gabor [43] 89.8 ± 3.1 89.2 ± 3.0 86.4 ± 3.3 83.0 ± 4.3

LBP [9] 92.6 ± 2.9 89.9 ± 3.1 87.3 ± 3.4 84.3 ± 4.1

LDP 96.4 ± 0.9 95.5 ± 1.6 93.1 ± 2.2 90.6 ± 2.7

 

on the 6-class prototypic expression recognition using SVM 
with RBF kernel. Table 11 lists the recognition results with 
LBP, Gabor, and the proposed LDP feature. As with low-
resolution images, it is difficult to extract geometric features 
[45]; therefore, appearance-based methods seem to be a good 
alternative. Our analysis with the LDP feature demonstrates 
that the proposed descriptor performs robustly and stably over 
a range of expressions, even with low-resolution facial image. 

Our experimental results validate that the proposed LDP 
performs better than LBP in expression recognition. 
Nevertheless, it is relatively more expensive than that of LBP 
because it needs to compute different edge responses with a 
compass mask. Instead of convoluting the image pixels with a 
3×3 mask, the edge responses can easily be generated with the 
help of integral images. This enables computation of each edge 
response with only eight additive operations, which in turns 
allows the proposed method, which is suitable for real time 
application. 

VIII. Conclusion 

This paper describes a new local facial descriptor based on 
LDP codes for facial expression recognition. The LDP code 
contains local information encoding the texture, and the 
descriptor contains the global information. Extensive 
experiments illustrate that the LDP features are effective and 
efficient for expression recognition. The discriminative power 
of the LDP descriptor mainly lies in the integration of the local 
edge response pattern. Furthermore, with dimensionality 
reduction techniques, like PCA or Adaboost, the newly 
transformed LDP features also maintain a high recognition rate 
with lower computational cost. Once trained, our system can 
be used in consumer products for human-computer interaction 
which require recognition of facial expressions. Psychological 
experiments by Bassili [46] have suggested that facial 
expressions can be recognized more accurately from sequence 
images than from a single image. In future, we plan to explore 
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the sequence images and incorporate temporal information 
with the LDP descriptor. 
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