• Title/Summary/Keyword: edge beam

Search Result 352, Processing Time 0.029 seconds

Measurement of Dose outside a 6 MV Field Edge Using Optically Stimulated Luminescent Nano Dot Dosimeters (광자극형광나노닷선량계를 사용한 6 MV 조사야 가장자리 바깥 선량 측정)

  • Kim, Jongeon;Kim, Wontae
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.7
    • /
    • pp.449-454
    • /
    • 2014
  • The purpose of this study is(was) to investigate the shielding ratio of 1 mmPb and the off axis ratio outside the field edge at depth of 1 cm from a phantom surface for 6 MV photon beam. A dose of 180 cGy was delivered to a depth of 10 cm for a $10{\times}10cm^2$ and $15{\times}15cm^2$ field in the SAD technique. The off axis ratio was calculated by measuring the dose of optically stimulated luminescent nanoDot dosimeters(OSLnDs) positioned at 2, 4 and 6 cm from the field edge, and the center axis of field. And the shielding ratio of 1 mmPb was calculated by measuring the dose of OSLnDs positioned at 2, 4 and 6 cm from the field edge.. As a result, for a $10{\times}10cm^2$ and $15{\times}15cm^2$ field, the off axis ratios were acquired 0.008-0.023 and 0.011-0.028, respectively. Also the shielding ratios of 1 mmPb were acquired 0.868-0.888 and 0.807-0.842, respectively. These results provide data to protect organs at risk outside the radiation treatment field.

Dosimetric Verifications of the Output Factors in the Small Field Less Than $3cm^2$ Using the Gafchromic EBT2 Films and the Various Detectors (Gafchromic EBT2필름과 다양한 검출기를 이용하여 $3cm^2$ 이하의 소조사면에서 출력비율의 선량검증)

  • Oh, Se An;Yea, Ji Woon;Lee, Rena;Park, Heon Bo;Kim, Sung Kyu
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.218-224
    • /
    • 2014
  • The small field dosimetry is very important in modern radiotherapy because it has been frequently used to treat the tumor with high dose hypo-fractionated radiotherapy or high dose single fraction stereotactic radiosurgery (SRS) with small size target. But, the dosimetry of a small field (< $3{\times}3cm^2$) has been great challenges in radiotherapy. Small field dosimetry is difficult because of (a) a lack of lateral electronic equilibrium, (b) steep dose gradients, and (c) partial blocking of the source. The objectives of this study were to measure and verify with the various detectors the output factors in a small field (<3 cm) for the 6 MV photon beams. Output factors were measured using the CC13, CC01, EDGE detector, thermoluminescence dosimeters (TLDs), and Gafchromic EBT2 films at the sizes of field such as $0.5{\times}0.5$, $1{\times}1$, $2{\times}2$, $3{\times}3$, $5{\times}5$, and $10{\times}10cm^2$. The differences in the output factors with the various detectors increased with decreasing field size. Our study demonstrates that the dosimetry for a small photon beam (< $3{\times}3cm^2$) should use CC01 or EDGE detectors with a small active volume. And also, Output factors with the EDGE detectors in a small field (< $3{\times}3cm^2$) coincided well with the Gafchromic EBT2 films.

Contralateral Breast Dose Reduction Using a Virtual Wedge (가상쐐기를 이용한 반대측 유방선량감소)

  • Yeo, In-Hwan;Kim, Dae-Yong;Kim, Tae-Hyun;Shin, Kyung-Hwan;Chie, Eui-Kyu;Park, Won;Lim, Do-Hoon;Huh, Seung-Jae;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.23 no.4
    • /
    • pp.230-235
    • /
    • 2005
  • Purpose: To evaluate the contralateral breast dose using a virtual wedge compared with that using a Physical wedge and an open beam in a Siemens linear accelerator. Materials and Methods: The contralateral breast dose was measured using diodes placed on a humanoid phantom. Diodes were placed at 5.5 cm (position 1), 9.5 cm (position 2), and 14 cm (position 3) along the medial-lateral line from the medial edge of the treatment field. A 6-MV photon beam was used with tangential irradiation technique at 50 and 230 degrees of gantry angle. Asymmetrically collimated $17{\times}10cm$ field was used. for the first set of experiment, four treatment set-ups were used, which were an open medial beam with a 30-degree wedged lateral beam (physical and virtual wedges, respectively) and a 15-degree wedged medial beam with a 15-degree wedged lateral beam (physical and virtual wedges, respectively). The second set of experiment consists of setting with medial beam without wedge, a 15-degree wedge, and a 50-degree wedge (physical and virtual wedges, respectively). Identical monitor units were delivered. Each set of experiment was repeated for three times. Results: In the first set of experiment, the contralateral breast dose was the highest at the position 1 and decreased in order of the position 2 and 3. The contralateral breast dose was reduced with open beam on the medial side ($2.70{\pm}1.46%$) compared to medial beam with a wedge (both physical and virtual) ($3.25{\pm}1.59%$). The differences were larger with a physical wedge ($0.99{\pm}0.18%$) than a virtual wedge ($0.10{\pm}0.01%$) at all positions. The use of a virtual wedge reduced the contralateral breast dose by 0.12% to 1.20% of the proscribed dose compared to a physical wedge with same technique. In the second experiment, the contralateral breast dose decreased in order of the open beam, the virtual wedge, and the physical wedge at the position 1, and it decreased in order of a physical wedge, an open beam, and a virtual wedge at the position 2 and 3. Conclusion: The virtual wedge equipped in a Siemens linear accelerator was found to be useful in reducing dose to the contralateral breast. Our additional finding was that the surface dose distribution from the Siemens accelerator was different from a Varian accelerator.

Dose Characteristics of Total-Skin Electron-Beam Irradiation with Six-Dual Electron Fields (Six-Dual 전자선 조사면에 의한 전신 피부 조사의 선량 특성)

  • Choi, Tae-Jin;Kim, Jin-Hee;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.16 no.3
    • /
    • pp.337-345
    • /
    • 1998
  • Purpose : To obtain the uniform dose at limited depth to entire surface of the body, the dose characteristics of degraded electron beam of the large target-skin distance and the dose distribution of the six-dual electron fields were investigated Materials and Method : The experimental dose distributions included the depth dose curve, spatial dose and attenuated electron beam were determined with 300 cm of target-skin distance (TSD) and full collimator size (35*35 $cm^2$ on TSD 100 cm) in 4 MeV electron beam energy. Actual collimated field size of 105 cm * 105 cm at the distance of 300 cm could include entire hemibody. A patient was standing on step board with hands up and holding the pole to stabilize his/her positions for the six-dual fields technique. As a scatter-degrader, 0.5 cm of acrylic plate was inserted at 20 cm from the body surface on the electron beam path to induce ray scattering and to increase the skin dose. Results : The full width at half maximum(FWHM) of dose profile was 130 cm in large field of 105*105 $cm^2$ The width of $100\pm10\%$ of the resultant dose from two adjacent fields which were separated at 25 cm from field edge for obtaining the dose unifomity was extended to 186 cm. The depth of maximum dose lies at 5 mm and the 80$\%$ depth dose lies between 7 and 8 mm for the degraded electron beam by using the 0.5 cm thickness of acrylic absorber. Total skin electron beam irradiation (TSEBI) was carried out using the six dual fields has been developed at Stanford University. The dose distribution in TSEBI showed relatively uniform around the flat region of skin except the protruding and deeply curvatured portion of the body, which showed excess of dose at the former and less dose at the latter. Conclusion : The percent depth dose, profile curves and superimposed dose distribution were investigated using the degraded electron beam through the beam absorber. The dose distribution obtained by experiments of TSEBI showed within$\pm10\%$ difference except the protruding area of skin which needs a shield and deeply curvatured region of skin which needs boosting dose.

  • PDF

On the nonlinear structural analysis of wind turbine blades using reduced degree-of-freedom models

  • Holm-Jorgensen, K.;Staerdahl, J.W.;Nielsen, S.R.K.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.107-127
    • /
    • 2008
  • Wind turbine blades are increasing in magnitude without a proportional increase of stiffness for which reason geometrical and inertial nonlinearities become increasingly important. Often these effects are analysed using a nonlinear truncated expansion in undamped fixed base mode shapes of a blade, modelling geometrical and inertial nonlinear couplings in the fundamental flap and edge direction. The purpose of this article is to examine the applicability of such a reduced-degree-of-freedom model in predicting the nonlinear response and stability of a blade by comparison to a full model based on a nonlinear co-rotating FE formulation. By use of the reduced-degree-of-freedom model it is shown that under strong resonance excitation of the fundamental flap or edge modes, significant energy is transferred to higher modes due to parametric or nonlinear coupling terms, which influence the response and stability conditions. It is demonstrated that the response predicted by such models in some cases becomes instable or chaotic. However, as a consequence of the energy flow the stability is increased and the tendency of chaotic vibrations is reduced as the number of modes are increased. The FE model representing the case of infinitely many included modes, is shown to predict stable and ordered response for all considered parameters. Further, the analysis shows that the reduced-degree-of-freedom model of relatively low order overestimates the response near resonance peaks, which is a consequence of the small number of included modes. The qualitative erratic response and stability prediction of the reduced order models take place at frequencies slightly above normal operation. However, for normal operation of the wind turbine without resonance excitation 4 modes in the reduced-degree-of-freedom model perform acceptable.

High power tunable Ti:sapphire laser with sub-40fs pulsewidth (40펨토초 미만 펄스폭의 고출력 파장가변 티타늄사파이어 레이저)

  • 임용식;노영철;이기주;김대식;장준성
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.5
    • /
    • pp.430-438
    • /
    • 1999
  • We have utilized soft-aperturing by gain media to develop a high-power tunable Ti:Sapphire laser with sub-40-fs and broad tuning range. The tunable spectral range was only limited by the bandwidth of mirrors. We made use of knife-edge slits near an intra-cavity prism controlled by micro-stepping-motors to tune the center wavelength continuously. The tunability of the center wavelength was ranged from 770 nm to 870 nm, and the measured pulsewidth was sub-40 fs throughout the above spectral range. The shortest pulsewidth was about 17 fs at the center wavelength of 820 nm and the spectral bandwidth was 72 nm. At 5 W pumping power of the Ar-ion laser we obtained average output power of 440 mW~580 mW. For the cw and Kerr-lens mode-lodking conditions, we have evaluated the value of an amplitude modulation to be ${\gamma}=2.5{\times}10^{-8}/W$ from the calculated waists of a Gaussian beam on the Ti:sapphire crystal surface. Using this result we demonstrate that the generation of sub-40-fs Kerr-lens mode-locked pulse can be described by the Ginzberg-Landau model which is a weak pulse shaping model.

  • PDF

Fetal dose from Head and Neck Tomotherapy Versus 3D Conformal Radiotherapy

  • Park, So Hyun;Choi, Won Hoon;Choi, Jinhyun
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.4
    • /
    • pp.156-160
    • /
    • 2019
  • Background: To compare the dose of radiation received by the fetus in a pregnant patient irradiated for head and neck cancer using helical tomotherapy and three-dimensional conformal radiation therapy (3DCRT). Materials and Methods: The patient was modeled with a humanoid phantom to mimic a gestation of 26 weeks. Radiotherapy with a total dose of 2 Gy was delivered with both tomotherapy (2.5 and 5.0 cm jaw size) and 3DCRT. The position of the fetus was predicted to be 45 cm from the field edge at the time of treatment. The delivered dose was measured according to the distance from the field edge and the fetus. Results and Discussion: The accumulated dose to the fetus was 1.6 cGy by 3DCRT and 2 and 2.3 cGy by the 2.5 and 5 cm jaw tomotherapy plans. For tomotherapy, the fetal dose with the 2.5 cm jaw was lower than that with the 5 cm jaw, although the radiation leakage was greater for 2.5 cm jaw plan due to the 1.5 fold longer beam-on time. At the uterine fundus, tomotherapy with a 5 cm jaw delivered the highest dose of 2.4 cGy. When the fetus moves up to 35 cm at the 29th week of gestation, the resultant fetal doses for 3DCRT and tomotherapy with 2.5 and 5 cm jaws were estimated as 2.1, 2.7, and 3.9 cGy, respectively. Conclusion: For tomotherapy, scattering radiation was more important due to the high monitor unit values. Therefore, selecting a smaller jaw size for tomotherapy may reduce the fetal dose. however, evaluation of risk should be individually performed for each patient.

p-Adaptive Analysis by Three Dimensional Hierarchical Hexahedral Solid Element (3차원 계층적 육면체 고체요소에 의한 p-적응적 해석)

  • Woo, Kwang-Sung;Jo, Jun-Hyung;Shin, Young-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.81-90
    • /
    • 2008
  • This paper presents a finite element formulation for the three-dimensional hierarchical solid element using Integrals of Legendre polynomials. The proposed hexahedral solid element is composed of four different modes including vertex, edge, face, and internal mode, respectively. The eigenvalue and patch test have been carried out to confirm the zero-energy mode and constant strain condition. In addition to these, a posteriori error estimation has been studied for the p-adaptive finite element analysis that is based on a smoothing technique to compute a post-processed solution from the finite element solution. The uniform p-refinement and non-uniform p-refinement are compared in terms of convergence rate as the number of degree of freedom is increased. The simple cantilever beam is tested to show the performance of the proposed solid element.

  • PDF

X-ray Induced Electron emission Spectroscopy

  • 송세안;이재철;최진학;김준홍;이재학;임창빈
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.191-191
    • /
    • 1999
  • Extended X-ray Absorption Fine Structure (EXAFS)는 일반적으로 널리 사용하는 X선 회절분광기로 분석하기 힘든 chemical 또는 biological system의 structural analyses에 매우 유용한 분석방법이다. 특히 세라믹이나 유전체 비정질 재료의 미세 원자 구조에 관한 정보를 얻는데는 가장 강력한 분석방법중의 하나로 알려져 있다. 현재까지 대부분의 EXAFS 실험은 방사광 가속기를 이용하여 수행하였다. 그런데 신제품 개발의 순환주기가 급속하게 단축되는 현실적인 문제에 부응하기 위하여 실험실에서 EXAFS 실험을 수행할 수 있는 system을 개발하게 되었다. 개발한 XIEES 장비는 rotating anode 형의 18kW X-ray source, Optical system, Detection system, Stepping motor control system, vacuum system, Utility 등으로 구성하였다. Optical system에서의 6개의 Johanson type monochromator를 사용하여 분석가능한 x-ray energy range를 480eV에서 41keV까지 구현하였다. 이는 산소에서 우라늄까지 분석이 가능함을 의미하는 것으로, 산화물 연구에 많이 활용할 것으로 기대한다. XIEES는 투과 및 형광 X-ray를 검출할 수 있는 기능과 X-ray에 의해 여기 되는 모든(광전자, Aiger 전자, 이차전자)들을 검출할 수 있는 기능을 갖추고 있는데 이를 Total Electron Yield 측정이라고 한다. Total Electron Yield 측정은 박막 시료와 같이 투과가 되지 않는 시료를 분석할 뿐만 아니라, 경원소 분석, 낮은 에너지에서 흡수 edge가 나타나는 L-edge 측정을 통한 전자 구조 분석 등에 유용한다. 실험실용 XIEES 장비는 방사광가속기에 비해 x-ray flux가 크게 뒤지는 문제와 Total Electron Yield를 측정하는 데 있어서 source에서 나오는 x-ray beam이 진공용기 안에서 산란되어 이차전자를 여기하고 이 이차전자들이 전자검출기에 유입되어 측정에 영향을 미치는 background 문제 등이 있다. 이 두 가지 문제를 해결하기 위하여 Capillary tube를 사용하였다. 본 연구에서는 실험실용 XIEES 장비를 소개하고 이를 이용하여 Cu standard 시료에서 측정한 EXAFS 결과와 Capillary tube를 사용하여 얻은 x-ray flux 증진 및 background 제거 효과에 대해서 발표한다.

  • PDF

Visualization Study of High-Incidence Vortical Flow over the LEX/Delta Wing Configuration with Sideslip (옆미끄럼을 갖는 LEX/삼각 날개 형상에 대한 높은 받음각 와유동의 가시화 연구)

  • Sohn, Myong-Hwan;Lee, Ki-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.109-117
    • /
    • 2002
  • An off-surface flow visualization experiments have been performed to investigate the flow field over a delta wing with the leading edge extension(LEX). The model is a flat wing with $65^{\circ}$ sweepback angle. The free stream velocity is 6.2 m/s, which corresponds to Reynolds number of $4.4\times10^5$ based on the wing root chord. The angle of attack and sideslip angle range from $16^{\circ}\sim28^{\circ}$ and $0^{\circ}\sim-15^{\circ}$, respectively. The visualization technique of using the micro water-droplet and the laser beam sheet enabled to observe the vortical flow structures, which can not be obtained by 5-hole probe measurements. With sideslip angle, the interaction and breakdown of the LEX and wing vortices was promoted in the windward side, whereas, it was suppressed in the leeward side.