• Title/Summary/Keyword: eco-stream

Search Result 137, Processing Time 0.024 seconds

Run-off Impact Assessment of the Steeped Cornfield to Small Stream

  • Shin, Joung-Du;Lee, Jong-Sik;Kim, Won-Il;Jung, Goo-Bok;So, Kyu-Ho;Lee, Jung-Teak;Lee, Myong-Sun
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.334-340
    • /
    • 2005
  • This experiment was conducted to evaluate the nutrient loss and to assess the eutrophication into small stream by intensive rains in the steeped cornfield during cultivation. The crop cultivated was a soiling com (DW5969), and the experimental plots were divided into two parts that were 10 and 18% of slope degrees. The amount of T-N and T-P loss was calculated by analysis of surface run-off water quality, and was investigated the effect of eutrophication to small stream as a part of life cycle assessment (LCA) methodology application. For the surface run-off water quality, EC and T-N values were highest in first runoff event as compared to the other events and maintained the stage state with litter variations at every hour during the runoff period except for EC in the slope 18%. However, T-P concentration has been a transient stage after runoff event of July 27. Total surface run-off ratio was not significantly different with slope degrees, but amount of T-N and T-P losses at 18% of slope were high as $5.96kg\;ha^{-1}\;and\;0.65kg\;ha^{-1}$ as relative to 10% of slope degree, respectively. Furthermore, T-N losses from run-off water in the sloped cornfield 10 and 18% were approximately 9.8 and 12.5% of the N applied as fertilizer when the fertilizer applied at recommended rates after soil test, respectively. For the eutrophication impact to the small stream, it was shown that $PO_4$ equivalence and Eco-indicator value at 18% of slope degree were greater as much $6.11kg\;ha^{-1}$ and 0.81 as compared to the slope angle 10%, respectively. Therefore, it was appeared that each effect of nutrient losses, eutrophication and Eco-indicator value was enhanced according with higher slope degree.

A Study on Improvements of Eco-Natural Map Preparation Guideline through an Assessment of River - Focused on the Hwang River - (하천평가기준을 반영한 생태·자연도 작성지침 개선방안 연구 - 황강을 대상으로 -)

  • Kim, Dae-Young;Sung, Hyun-Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.5
    • /
    • pp.19-29
    • /
    • 2012
  • The purpose of this study is to suggest improvements of Eco-Natural map preparation guideline by presenting assessment methods that can be applied to the result of river ecosystem health survey and assessment, using the Geographic Information System. The area for studying is the main stream of the Hwang River where is easy to collect data and available to compare before and after of river assessment. It was reevaluated by reflecting the result of river ecosystem health assessment of the Ministry of Environment. As the result, Eco-Natural map of the study area reflecting the river assessment, the changes in the area ratio by grade have been increased from 1.14% to 14.03% in the first-grade and from 24.64% to 43.91% in the second-grade. It is considered to present more realistic grade due to the assessment of the rivers that have not been reflected in the meantime. Consequently, the result of this study will be useful for establishing the development projects on the rivers, providing the foundation for more realistic and active protection.

Prior Eco-preserve Zoning through Stream Ecosystem Evaluation on Dam Basin -A Case of Yongdam-dam Watershed, Jeollabukdo Province- (댐유역 하천생태계평가를 통한 생태보전우선지역설정 -용담다목적댐 유역을 사례로-)

  • Lim, Hyun-Jeong;Lee, Myung-Woo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.2
    • /
    • pp.103-112
    • /
    • 2011
  • The purpose of this study is to specify the prior eco-preserve zone by establishing the eco-landscape unit on the stream corridor and evaluating the stream ecosystem in the dam basin. The fundamental ecological data was surveyed and collected through "the ecosystem project on Yongdam multipurpose dam watershed" from 2008 to 2009. The Yongdam Dam Watershed has several streams, Jujacheon, Jeongjacheon and Guryangcheon, of which the area is $930km^2$, stretching to Jinangun, Jangsugun and Mujugun Jellabukdo. In spite of being used for drinking purpose, the dam water quality and ecosystem is threatened by in-watershed pollution produced by development, golf course grounds and sports complex, etc. The landscape unit of stream corridor was zoned across by 250m, 500m, and 750m from the vicinity line of stream, which was decided to the accuracy of mapping and surveying. Types of evaluation are the Stream Corridor Evaluation(SCE) and the Vegetated Area Evaluation(VAE). In the process of SCE, several indices were analysed, fish species diversity, species peculiarity, and stream naturality. Indices for VAE were forest stand map, vegetation protection grade, species diversity and peculiarity for wild bird and mammal life. The importance of the ecological items is categorized into three levels and overlapped for specifying the prior preserve zone. The area at which legally protecting species appeared is categorized as absolute preserve area. This study might be meaningful for proposing the evaluation process of a stream corridor ecosystem, which can synthesize a lot of individual ecological surveys. We hope further research will be actively performed about the ecotope mapping which is based on a individual wildlife territory and habitats and also their relationships.

A Study on the Vegetation of the Present-day Potential Natural State of Water for Flood Plain Restoration in South Korea (홍수터복원을 위한 국내 현재잠재자연하천 식생에 대한 연구)

  • Kim, Hyea-Ju;Shin, Beom-Kyun;You, Young-Han;Kim, Chang-Hwan
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.5
    • /
    • pp.564-594
    • /
    • 2008
  • For this study, which was conducted in summer from $2006{\sim}2007$, 25 places of stream area in Korea, which were not affected by human, were selected by considering variable environmental factors. Plant surveys were performed in five qaudrats per each place of stream area(stream length=about 1km) on the basis of Braun-Blanquet(1964) and in four belt(length=20m) per each place of stream area by using belt-transect method in order to study the vegetation of the present-day potential natural state of water. In the results of the plant survey, the common plant communities in the mid-northern district(latitude$37^{\circ}37.9^{\circ}N$) were Quercus mongolica community and Fraxinus rhynchophylla community(with Quercus mongolica and Quercus aliena), and the common plant communities in the southern district(latitude$35^{\circ}35.9^{\circ}N$) were Quercus serrata community, Styrax japonica community and Quercus variabilis community. The common plant communities in the central district(latitude$36^{\circ}36.9^{\circ}N$) were Quercus serrata community, Fraxinus rhynchophylla community and Quercus aliena community, which have the middle characteristic between mid-northern and southern district. Also, in the results of correlation analysis between environmental factors and appearance of plant species in the survey places of stream area, Eco region showed the most significant correlation, but for the plan to restore flood plain, it is necessary to clarify the vegetation of potential natural stream by increasing the number of study cases considering variable environmental factors, in the future.

Development of Revegetation Technique for Water Attacking Point Using Waterlogged Prevention Frame Revetment (침수방틀을 이용한 자연형 하천의 수충부 녹화공법 개발)

  • Moon, Seok Ki;Lee, Eun Yeob;Han, Sung Sik;Lee, Ki Joon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.1
    • /
    • pp.98-109
    • /
    • 2001
  • This study aimed to investigate the effect of revegetation technique for water attacking point using waterlogged prevention frame revetment. In this study, we evaluate frame revetment stability, water quality, plant growth and ecological and envirnomental changes in Mooshim streamside landscape. The results are as follows; 1) The waterlogged prevention frame revetment appeared to be stable despite of two big floods. The materials used for the revetment were not eroded on the water attacking point. Thus, we confirmed the effect of scour prevention of the frame work. 2) The effects of the frame revetment on the water quality appeared to be good for the surrounding environment. Dissolved Oxygen(DO) was higher about $0.4{\sim}0.6mg/{\ell}$ at the frame revetment than that of the main stream flow. pH value was lower about 0.4~0.5. Electric Conductivity(EC) showed lower about $0.8{\sim}1.1{\mu}s/cm$. at submersion prevent frame than the low-flow of the stream. Turbidity was lower about $0.6{\sim}1.2mg/{\ell}$. 3) As the effects on ecological and environmental conditions, we discovered a number of carassius auratus and Zacco platypus in the frame revetment area. Also, sympetrum balteata, coenagrionidae was observed frequently. 4) The plant growth did not appear to tumble or wither despite of two big floods. The visual rating of plant growth was evaluated as medium (around 5 point) 5) The landscape analysis derived four factors(i.e. the harmony, the variation, the flexibility and the provincial characteristics) from the factor analysis.

  • PDF

Instream Flow Estimation for Gap-Stream Watershed Considering Ecosystem, Landscape, Water-friendly Environment and Water Quality (생태.경관.친수.수질을 고려한 갑천 유역의 하천유지유량 산정)

  • Kim, Tai-Cheol;Lee, Duk-Joo;Moon, Jong-Pil;Lee, Jae-Myun;Gu, Hui-Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.11-20
    • /
    • 2007
  • In order to make the way to determine the instream flow more practically, we have investigated many case studies and reviewed reports and papers. To validate instream flow level suggested by the case studies, DAWAST and HEC-RAS model were applied to the Gap-stream watershed in Daejeon city. Flow-duration analysis was performed both with the stream flow data gauged in the Indong, Boksu, and Hoeduck stations, and with the stream flow data estimated by the DAWAST model and the specific discharge method. Instream flow was determined among the flow-duration analysis, DAWAST, HEC-RAS model and mass balance approach. It was satisfied with various factors such as target water quality, water depth for eco-system and resorts, water surface width, flow velocity for landscape in dry season. The study suggested that the mean low flow could be replaced into the instream flow for the preliminary study because the instream flow considering ecosystem, landscape, water-friendly environment and water quality was generally close to the mean low flow.

Removal Efficiency of Water Contents using Inertial Impaction Separator with Change in Relative Humidity (입구 습도 변화에 따른 관성 충돌 방식의 액적 분리장치의 수분제거효율 변화)

  • Song, Dong Keun;Lee, Sin Young;Hong, Won Seok;Shin, Wanho;Kim, Gyujin;Kim, Hanseok
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.247-252
    • /
    • 2013
  • Removal of water contents in a gas is needed in industrial field of gas processing related on energy production/conversion, and environmental treatment. Inertial separators are economic devices for separating droplets from the gas stream. For design and incorporation of inertial pre-treatment separator, characteristics of removal of water contents with various operation conditions are needed. In this study, removal efficiency of water droplets at various flowrates (5-14 SCMM) and relative humidity (R.H.) conditions (40%, and 90%) has been investigated. At low R.H. condition, the removal characteristic is similar to the removal of solid particles. But, droplet growth resulting from the condensation of water vapor at high R.H. condition, is significant and it made increase in removal efficiency of droplet phase of water contents. For rapid removal of water contents, an effective method to enhancing condensation growth of water droplets is highly needed.

Comparison of Bird Communities Between Ecological Restoration Area and Non-restoration Area in the Yangjae Stream, Korea (양재천에서 생태적 복원구간과 비복원구간에 서식하는 조류군집의 비교)

  • Kim, Jungsoo;Koo, Tae-Hoe
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.4
    • /
    • pp.1-11
    • /
    • 2005
  • Yangjae stream was divided with Seoul and Gwacheon reach. Seoul reach was ecologically restored; however, Gwacheon reach was not. Similarity index of the bird communities between the two areas was relatively high, 79.9%. The dominant species in Seoul reach were Passer montanus, Pica pica, Paradoxornis webbianus and Anas crecca. The dominant species in Gwacheon reach were Passer montanus, Pica pica, Paradoxornis webbianus and Streptopelia orientalis. The different species was Anas crecca in Seoul and Streptopelia orientalis in Gwacheon. An eco-park was constructed along the stream of Seoul reach since 1996 but was not in Gwacheon reach; the number of species has increased in Seoul area($r^2$=0.846, p<0.01), but Gwacheon was not change($r^2$=0.023, p>0.05) since 1996. The number of individuals, however, was almost constant in both reaches(Seoul : $r^2$=0.211, p>0.05, Gwacheon : $r^2$=0.032, p>0.05). In Seoul reach, the ecological restoration of stream was helpful to increase bird diversity. The number of waterbirds such as herons, plovers, sandpipers and wagtails was higher in Gwacheon reach than in Seoul reach, but the number of ducks and songbirds was higher in Seoul reach than in Gwacheon reach. We suggest that the ecological restoration in Seoul area might have negative effects on sandpipers, plovers and wagtails inhabiting on the flood plain in stream, but positive effects on other species such as herons, ducks and songbirds. Especially, the increasing number of ducks was attributed to an artificial pond in flood plain. The difference in the number of Streptopelia orientalis between both reaches was owing to the habitat differences such as forest trees playing a role as patch in high revetment. From the present investigation, it could be concluded that the ecological restoration of the local stream must be carried out with consideration of water channels, sand banks and water front in addition to the high revetment for birds to attract diverse bird communities.

The Stockpiling and Spreading of Topsoil for the Ecological Restoration of Floodplains and the Levee Slope of a Stream (하천 고수부와 제방 비탈면의 생태적 복원을 위한 표토의 집토와 부설)

  • Han, Seung-Wan;Kim, Hyoung-Joon;Chae, Byoung-Koo;Kim, Jeong-Goo
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.1
    • /
    • pp.99-104
    • /
    • 2015
  • Topsoil including numerous soil seedbanks has been known to be a valuable material for ecological restoration. There is a lack of specific study for its utilization in the field of stream restoration. This study conducted a revaluation of the value of topsoil as a material for stream restoration. Furthermore, an ecological technique using topsoil was applied in an improvement project of a stream environment at the Hwanggujicheon Stream in Korea. Stockpiling and spreading topsoil was specifically applied to the revegetation of a low slope revetment and a high flow plain. The result of this application showed that topsoil played an integral role in eco-friendly restoration in terms of ecological, flood control, economic, and constructional aspects. In conclusion, this study's findings suggest that topsoil is a suitable candidate material for stream restoration.

Distribution of Freshwater Organisms in the Pyeonggang Stream and Application Effects of Hydrothermal Energy on Variations in Water Temperature by Return Flow in a Stream Ecosystem

  • Dohun Lim;Yoonjin Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.185-199
    • /
    • 2023
  • This study aimed to predict the effects of water ecology on the supply of hydrothermal energy to model a housing complex in Eco Delta Smart Village in Busan. Based on the results, engineering measures were recommended to minimize problems due to possible temperature variations on the supply of hydrothermal energy from the river. The current distribution of fish, benthic macroinvertebrates, and phytoplankton in the Pyeonggang Stream was monitored to determine their effects on water ecology. In the research area, five species and three families of fish were observed. The dominant species was Lepomis macrochirus, and the subdominant species was Carassius auratus. Twenty-five species and 21 families of benthic macroinvertebrates were found. The distribution of aquatic insects was poor in this area. The dominant species were Chironomidae sp., Lymnaea auricularia, Appasus japonicus, and Caridina denticulata denticulata in February, May, July, and October. Dominant phytoplankton were Aulacoseira ambigua and Nitzschia palea in February and May. Microcystis sp. was dominant in July and October. The health of the ecology the Pyeonggang Stream was assessed as D (bad) according to the benthic macroinvertebrate index (BMI). Shifts in the location of the discharge point 150 m downstream from intake points and discharge through embedded rock layer after adding equal amounts of stream water as was taken at the beginning were suggested to minimize water temperature variations due to the application of hydrothermal energy. When the scenario (i.e., quantity of water intake and dilution water, 1,600 m3/d and water temp. difference ±5 ℃) was realized, variations in water temperature were assessed at -0.19 ℃ and 0.59 ℃ during cooling and heating, respectively, at a point 10 m downstream. Water temperatures recorded at -0.20 ℃ and 0.68 ℃ during cooling and heating, respectively, at a point 10 m upstream. All stream water temperatures after the application of hydrothermal energy recovered within 24 hours. Future work on the long-term monitoring of ecosystems is suggested, particularly to analyze the influence of the water environment on hydrothermal energy supply operations.