DOI QR코드

DOI QR Code

Distribution of Freshwater Organisms in the Pyeonggang Stream and Application Effects of Hydrothermal Energy on Variations in Water Temperature by Return Flow in a Stream Ecosystem

  • Dohun Lim (Korea Natural Environment Institute) ;
  • Yoonjin Lee (College of Humanities, Konyang University)
  • Received : 2023.03.06
  • Accepted : 2023.04.25
  • Published : 2023.04.28

Abstract

This study aimed to predict the effects of water ecology on the supply of hydrothermal energy to model a housing complex in Eco Delta Smart Village in Busan. Based on the results, engineering measures were recommended to minimize problems due to possible temperature variations on the supply of hydrothermal energy from the river. The current distribution of fish, benthic macroinvertebrates, and phytoplankton in the Pyeonggang Stream was monitored to determine their effects on water ecology. In the research area, five species and three families of fish were observed. The dominant species was Lepomis macrochirus, and the subdominant species was Carassius auratus. Twenty-five species and 21 families of benthic macroinvertebrates were found. The distribution of aquatic insects was poor in this area. The dominant species were Chironomidae sp., Lymnaea auricularia, Appasus japonicus, and Caridina denticulata denticulata in February, May, July, and October. Dominant phytoplankton were Aulacoseira ambigua and Nitzschia palea in February and May. Microcystis sp. was dominant in July and October. The health of the ecology the Pyeonggang Stream was assessed as D (bad) according to the benthic macroinvertebrate index (BMI). Shifts in the location of the discharge point 150 m downstream from intake points and discharge through embedded rock layer after adding equal amounts of stream water as was taken at the beginning were suggested to minimize water temperature variations due to the application of hydrothermal energy. When the scenario (i.e., quantity of water intake and dilution water, 1,600 m3/d and water temp. difference ±5 ℃) was realized, variations in water temperature were assessed at -0.19 ℃ and 0.59 ℃ during cooling and heating, respectively, at a point 10 m downstream. Water temperatures recorded at -0.20 ℃ and 0.68 ℃ during cooling and heating, respectively, at a point 10 m upstream. All stream water temperatures after the application of hydrothermal energy recovered within 24 hours. Future work on the long-term monitoring of ecosystems is suggested, particularly to analyze the influence of the water environment on hydrothermal energy supply operations.

Keywords

References

  1. Allan, J.D. (1995) Stream Ecology: Structure and function of running waters, Kluwer Academic Publishers, Dordrecht.
  2. Bates, B.C., Kundzewicz, S.W., Wu, S. and Palutikof, J.P. (2008) Climate change and water. Technical paper of the IPCC Secretariat, Geneca, Swiss.
  3. Boulton, A.J., Peterson, C.G., Grimm, N.B. and Fisher, S.G. (1992) Stability of an aquatic macroinvertebrate community in a multiyear hydrologic disturbance regime. Ecology, v.73, p.2192-2207. doi: 10.2307/1941467
  4. Busan Metropolitan Corporation, K-water, Busan Metropolitan City (2013) Environmental impact assessment report for waterfront zone creation project in the Eco Delta City.
  5. Busan Metropolitan Corporation, K-water, Busan Metropolitan City (2020) Post-environmental impact survey result notice for the waterfront zone creation project in the Eco Delta City
  6. Busan Metropolitan City (2018) The ecosystem monitoring of Nakdong River estuary, Water environment information system (http://water.nier.go.kr).
  7. Byon H.G. and Jeon, S.R. (1997) Feeding habit of bluegill, Lepomis macrochirus introduces in Korea. Korean Journal of Environmental Biology, v.15, p.165-174.
  8. Choi, K.C., Jeon, S.R., Kim, I.S. and Son, Y.M. (2002) Colored illustrations of the freshwater fishes of Korea, Hyangmun Publishing; Seoul.
  9. Cobb, G.G., Galloway, T.D. and Flannagan, J.F. (1992) Effects of discharge and substrate stability on density and species composition of stream insects. Canadian Journal of Fisheries and Aquatic Sciences, v.49, p.1788-1795. doi: 10.1139/f92-198
  10. Gang, H.S., Im, D.G., Jeong, S.H. and Kim, G.H. (2013) Habitat compatibility criteria and physical habitat interpretation of river fishes. Water for Future, v.41, p.47-61.
  11. Heck, R.E. and Kilham, P. (1988) Nutrient limitation of phytoplankton in fresh water and marine environments: a view of recent evidence on the effects enrichment, Limnology and Oceanography, v.33, p.796-822. doi: 10.4319/lo.1988.33.4part2.0796
  12. Kong, D.S et al. (2018) Development of benthic macroinvertebrates index (BMI) for biological assessment on stream environment. Journal of Korean Society on Water Environment, v.34, p.183-201. doi: 10.15681/KSWE.2018.34.2.183
  13. Jeon, S.R. (1980) Studies on the distributions of the Korean freshwater fishes (Ph.D thesis), Chungang University, p.18-45.
  14. Joung, S.H., Park, H.K. and Lee, S.H. (2013) Effect of climate change for diatom bloom at winter and spring season in Mulgeum station of the Nakdong River, South Korea. Korean Society of Water Environment, v.29. p.155-164.
  15. Jung, M.G. (1977) The fishes of Korea. Iljisa, Seoul.
  16. Jung, S.W., Kwang, S.H. and Jeong, J.C. (2020) Preliminary checklist and current status of aquatic insects in Korea national park. Entomological Research Bulletin, v.36, p.27-43.
  17. Jung, Y.H. (2018) Estimation of the probable maximum water thermal energy in Korean dams based on the water-energy nexus concept. Journal of the Korean Society of Agricultural Engineers, v.60, p.45-53. doi: org/10.5389/KSAE.2018.60.2.045.
  18. Kang, J.Y., Kim, J.M., Kim, Y.D. and Kang, B.S. (2013) Effect of climate change on water quality in Seonakdong River experimental catchment. Journal of Korean Society of Water and Wastewater, v.27, p.197-206. doi:org/10.11001/jksww.2013.27.2.197.
  19. Karl, E.H., Janes, R.T., East, T.L. and Smith V.H. (2003) N:P ratios, light limitation, and cyanobacteral dominance in a subtropical lake impacted by non-point source nutrient pollution. Environmental Pollution, v.122, p.379-390. doi: 10.1016/S0269-7491(02)00304-4
  20. Keckeis, S., Baranyi, C., Hein, T., Holarek, C., Riedler, P. and Schiemer, F. (2003) The significance of zooplankton grazing in a floodplain system of the River Danube. Journal of Plankton Research, v.25, p.243-253. doi: 10.1093/plankt/25.3.243
  21. Kim, I.S. (1997) Illustrated Encyclopedia of Fauna & Flora of Korea, Freshwater fishes, Ministry of Education in Korea. Seoul, v.37, p.133-135.
  22. Kim, I.S. and Kim, H.G. (1975) A study on the water pollution and its influence on the fish community in Jeonju-cheon Creek, Jeonrabug-do Province in Korea.
  23. Kim, J.K., Han, J. H. and An. K.G. (2010) Tolerance range analysis of fish on chemical water quality in aquatic ecosystems. Korean Journal of Limnology, v.43, p.459-470.
  24. Kim, Y. J. (2020) Sustainable clean water thermal energy. Water for Future, v.53, p.47-52.
  25. Korea Institute of Energy Research (2005) The Optimization of demonstration network plant using unutilized energy resources. Ministry of Science and Technology in Korea.
  26. Korea Environment Institute (2014) Study on water ecosystem impact and proper management plan of river water discharge water temperature. Ministry of Environment in Korea.
  27. Kwon, H.K., Oh, S.J., Yang, H.S. and Yu, Y.M. (2011) Effects of temperature and salinity on the growth of marine benthic microalgae for phytoremediation. Journal of the Korean Society for Marine Environment & Energy, The Korean Society for Marine Environment and Energy, v.14. p.130-137. doi:org/10.7846/JKOSMEE.2011.14.2.130.
  28. Lee, E.H., Kim, M., Kim, H.M., Son, M.S., Chang, K.H. and Nam, G.S. (2013) Ecological characteristics and distribution of fish in the downstream region of Gyeongan Stream. Korean Journal of Environmental Biology, v.31, p.478-485. doi: 10.11626/KJEB.2013.31.4.478
  29. Lee J.H, Gwon J.N. and Yang S.Y. (2002) Seasonal variation of phytoplankton community in the Nakdong River. Algae, v.17, p.267-273. doi:org/10.4490/ALGAE.2002.17.4.267.
  30. Lee Y.J. (2020) Contribution of phytoplankton and zooplankton to total organic carbon (TOC) in the reservoir-river-Seonakdong River, Busan. Journal of Environmental Science International, v.29, p. 691-702. doi:org/10.5322/JESI.2020.29.7.691.
  31. Lee W.O., Yang, H., Yoon, S.Y. and Park, Y.J. (2009) Study on the feeding habits Micropterus salmoides in Lake Okjeong and Lake Yongdam, Korea. Korean Journal of Ichthyology, v.21, p.200-207.
  32. Lenat, D.R. (1988) Water quality assessment of streams using a qualitative collection method for benthic macroinvertebrates. Journal of the North American Benthological Society, v.7, p.222-233. doi: 10.2307/1467422
  33. Magnuson, J.J., Crowder, L.B. and Medvick. P.A. (1979) Temperature as an ecological resource. American Zoologist, v.19, p.331-343. doi: 10.1093/icb/19.1.331
  34. Nalewajko, C. and Murphy T.P. (2001) Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimental approach. Limnology, v.2, p.45-48. doi: 10.1007/s102010170015
  35. Nelson, J.S. (1994) Fishes of the world, John Wiley & Sons, New York.
  36. Park, K.D, Kang, D.H., So, Y.H. and Kim, I.K. (2019) Temporal-spatial variations of water quality level and water quality index on the living environmental standards in the West Nakdong river, v.28, p.1071-1083. doi:org/10.5322/JESI.2019.28.12.1071.
  37. Raben, J.A. and Geider, R.J. (1988) Temperature and algal growth. New Phytologist, v.110, p.441-461. doi: 10.1111/j.1469-8137.1988.tb00282.x
  38. Rosenberg, D.M. and Resh, V.H. (1993) Freshwater biomonitoring and benthic macroinvertebrates. Chapman & Hall, New York.
  39. Shearer, K.A., Hayes, J.W., Jowett, I.G. and Olsen, D.A. (2015) Habitat suitability curves for benthic macroinvertebrates from a small New Zealand river. New Zealand Journal of Marine and Freshwater Research, v.49, p.178-191. doi: 10.1080/00288330.2014.988632
  40. Smith, V.H. (1982) The nitrogen and phosphorus dependence of algal biomass in lake: an empirical and theoretical analysis. Limnology and Oceanography, v.27, p.1101-1112. doi: 10.4319/lo.1982.27.6.1101
  41. Smith, V.H. (1983) Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science, v.221, p.669-671. doi: 10.1126/science.221.4611.669
  42. Son, H.J. (2013a) Changes of dominant phytoplankton community in downstream of the Nakdong River: from 2002 to 2012, v.35, p.289-293. doi: 10.4491/KSEE.2013.35.4.289
  43. Son, H.J. (2013b) The analysis of phytoplankton community structure in the middle-lower part of the Nakdong River, v.35, p.430-435. doi: 10.4491/KSEE.2013.35.6.430
  44. Stefan, H.G., Fang, X. and Eaton, J.G. (2001) Simulated fish habitat changes in North American lakes in response to projected climate warming. Transactions of the American Fisheries Society, v.130, p.459-477. doi: 10.1577/1548-8659(2001)130%3C0459:SFHCIN%3E2.0.CO;2
  45. The Ministry of Environment in Korea (2008a) The 3rd national natural environment survey (Mugae)
  46. The Ministry of Environment in Korea (2008b) The 3rd national natural environment survey (Gimhae)
  47. The Ministry of Environment in Korea (2008c) The 3rd national natural environment survey (Dongseon)
  48. The Ministry of Environment in Korea (2008d) The 3rd national natural environment survey (Dadae)
  49. Uchida, K. (1939) The fishes of Korea. Part I. Nemathognathi, Eventhognathi. Bull. Fish. Exp. Station Govern. Gen. of Tyosen, Husan, No.6, p.1-148.
  50. Vannote, R.L. and Sweeney, B.W. (1980) Geographic analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. American Naturalist, v.115, p.667-695. doi: 10.1086/283591
  51. Xia, L., Lu, X. and Yuwei, C. (2011) The effects of temperature and nutrient ratios on Microcystis blooms in Lake Taihu, China: An 11-year investigation. Harmful Algae, v.10, p.337-343. doi: 10.1016/j.hal.2010.12.002
  52. Xin, W., Chunbo, H., Feng, Z., Chuanping, F. and Yingnan, Y. (2011) Inhibition of the growth of two blue-green algae species (Microcystis areginosa and Anabaena spirodes) by acidification treatments using carbon dioxide. Bioresource Technology, v.102, p.5742-5748. doi: 10.1016/j.biortech.2011.03.015
  53. Yu, J.J., Lee, H.J., Lee, K.L., Lyu, H.S., Whang, J.W., La, Y.S. and Chen, S.U. (2014) Original article: relationship between distribution of the dominant phytoplankton species and water temperature in the Nakdong River, Korea. Korean Journal of Ecology and Environment, v.47, p.247-257. doi: 10.11614/KSL.2014.47.4.247