• Title/Summary/Keyword: earth environment

Search Result 2,297, Processing Time 0.034 seconds

Validation of Sea Surface Wind Estimated from KOMPSAT-5 Backscattering Coefficient Data (KOMPSAT-5 후방산란계수 자료로 산출된 해상풍 검증)

  • Jang, Jae-Cheol;Park, Kyung-Ae;Yang, Dochul
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1383-1398
    • /
    • 2018
  • Sea surface wind is one of the most fundamental variables for understanding diverse marine phenomena. Although scatterometers have produced global wind field data since the early 1990's, the data has been used limitedly in oceanic applications due to it slow spatial resolution, especially at coastal regions. Synthetic Aperture Radar (SAR) is capable to produce high resolution wind field data. KOMPSAT-5 is the first Korean satellite equipped with X-band SAR instrument and is able to retrieve the sea surface wind. This study presents the validation results of sea surface wind derived from the KOMPSAT-5 backscattering coefficient data for the first time. We collected 18 KOMPSAT-5 ES mode data to produce a matchup database collocated with buoy stations. In order to calculate the accurate wind speed, we preprocessed the SAR data, including land masking, speckle noise reduction, and ship detection, and converted the in-situ wind to 10-m neutral wind as reference wind data using Liu-Katsaros-Businger (LKB) model. The sea surface winds based on XMOD2 show root-mean-square errors of about $2.41-2.74m\;s^{-1}$ depending on backscattering coefficient conversion equations. In-depth analyses on the wind speed errors derived from KOMPSAT-5 backscattering coefficient data reveal the existence of diverse potential error factors such as image quality related to range ambiguity, discrete and discontinuous distribution of incidence angle, change in marine atmospheric environment, impacts on atmospheric gravity waves, ocean wave spectrum, and internal wave.

Bird Tracks from the Gyeongsang Basin of the Korean Peninsula: A Paradise of Mesozoic Birds (중생대 새의 낙원 한반도 경상 분지에서 산출되는 새 발자국 화석)

  • Kim, Jeong Yul;Kim, Kyung Soo;Lim, Jong Deock
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.1
    • /
    • pp.40-61
    • /
    • 2009
  • The Cretaceous Gyeongsang Supergroup, composed of clastic sediments mostly deposited in the lacustrine and fluvial environment, is widely distributed in the southern part of the Korean Peninsula. Diverse fossils of plants, molluscs, insects, footprints of dinosaurs, pterosaurs and birds, and eggs, bones, and teeth of dinosaurs have been found from the Gyeongsang Supergroup. New types of dinosaur, pterosaur, and bird tracks recently discovered from the Gyeongsang Supergroup attract great attention from the world. Several tracksites of dinosaurs and birds were designated as Natural Monument and nationally conserved, and many efforts have given to them for nomination of UNESCO World Heritage. Bird tracks from the Gyeonsang Supergroup are Koreanaornis hamanensis, Jindongornipes kimi, Goseongornipes markjonesi, Ignotornis yangi, Uhangrichnus chuni, and Hwangsanipes choughi, which correspond approximately one third of Mesozoic bird tracks recorded from the world. The Gyeongsang Basin of the Korean Peninsula yields world most diverse bird tracks which may be called a paradise of Mesozoic birds and they are important natural heritage providing significant information about evolution and paleogeographic distribution of birds.

Fluvial Processes and Vegetation - Research Trends and Implications (하천과정과 식생 - 연구동향과 시사점)

  • Woo, Hyoseop;Cho, Kang-Hyun;Jang, Chang Lae;Lee, Chan Joo
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.2
    • /
    • pp.89-100
    • /
    • 2019
  • We've reviewed existing studies on the interactions among vegetation, hydrology, and geomorphology in the stream corridors, adding one more factor of vegetation in the traditional area of hydro-geomorphology. Understanding of the interactions among those three factors is important not only academically but also practically since it is related intimately to the restoration of river corridor as well as management itself. Studies of this area started from field investigations in the latter part of the 20th century and focused on the flume experiments and then computer modelling in the 1990s and 2000s. Now, it has turned again to the field investigations of specific phenomena of the vegetative-hydrologic-geomorphologic interactions in detailed micro scales. Relevant studies in Korea, however, seem to be uncommon and far behind the international status quo in spite that practically important issues related directly to this topic have been emerged. In this study, we propose, based on the extensive literature review and authors' own knowledge and experiences, a conceptual diagram expressing the interactions among vegetation, flow (water), sediment, and geomorphology. Existing relevant studies in Korea since the 1990s are classified according to the categorization in the proposed diagrams and then briefly reviewed. Finally, considering the practical issues of riparian vegetation that have emerged recently in Korea, we propose areas of investigation needed in near future such as, among others, long-term and systematic field investigations and monitoring at multiple river corridors having different attributes on vegetative-hydrologic-geomorphologic interactions, including vegetative dynamics for succession.

Development of Numerical Model for Simulating Remediation Efficiency Using Surfactant in a NAPL Contaminated Area (계면활성제에 의한 NAPL 오염의 정화효율 수치 모의를 위한 모델 개발)

  • Suk, Heejun;Son, Bongho;Park, Sungmin;Jeon, Byonghun
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.206-222
    • /
    • 2019
  • Recently, various multiphase flows have been developed, and among them some models have been commercialized. However, most of them have been developed based on a pressure-based approach; therefore, various numerical difficulties were involved inherently. Accordingly, in order to overcome these numerical difficulties, a multiphase flow model, MultiPhaSe flow (MPS), following a fractional-flow based approach was developed. In this study, by combining a contaminant transport module describing an enhanced dissolution effect of a surfactant with MPS, a MultiPhaSe flow and TranSport (MPSTS) model was developed. The developed model was verified using the analytical solution of Clement. The MPSTS model can simulate the process of surfactant enhanced aquifer remediation including interphase mass transfer and contaminant transport in multiphase flow by using the coupled particle tracking method and Lagrangian-Eulerian method. In this study, a surfactant was used in a non aqueous phase liquid (NAPL) contaminated area, and the effect of hydro-geological heterogeneity in the layered media on remediation efficiency was studied using the developed model. According to the numerical simulation, when hydraulic conductivity in a lower layer is 10 times, 20 times, and 50 times larger than that in an upper layer, the concentration of dissolved diesel in the lower layer is much higher than that in the upper layer because the surfactant moves faster along the lower layer owing to preferential flow; thus, the surfactant enhances dissolution of residual non aqueous phase liquid in the lower layer.

Development of a new system for measurement of total effluent load of water quality

  • Keiji, Takase;Akira, Ogura
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.221-221
    • /
    • 2015
  • Sustainable use of water resource and conservation of water quality are essential problems in the world. Especially, problems of water quality are serious one for human health as well as ecological system of all creatures on the earth. Recently, the importance of total effluent load as well as the concentrations of pollutant materials has been recognized not only for the conservation of water quality but also for sustainable water use in watersheds. However, the measurement or estimation of total effluent load from non-point source area such as farm lands or forests may be more difficult because both of concentration and discharge of the water are greatly changed depending on various factors especially metrological conditions such as rainfall, while the measurement from a point source area may be easy because the concentration of pollutant materials and amount of discharge water are relatively steady. Therefore, the total effluent load from a non-point source is often estimated by statistical relationships between concentration and discharge, which is called as L-Q equation. However, a lot of work and time are required to collect and analyze water samples and to get the accurate relationship or regressive equation. So, we proposed a new system for direct measurement of total effluent load of water quality from non-point source areas to solve the problem. In this system, the overflow depth at a hydraulic weir is measured with a pressure gage every hourly interval to calculate the amount of hourly discharge at first. Then, the operating time of a small electric pump to collect an amount of water which is proportional to the discharge is calculated to intake the water into a storage tank. The stored water is taken out a few days later in a case of storm event or several weeks later in a case of non-rainfall event and the concentrations of water quality such as total nitrogen and phosphorous are analyzed in a laboratory. Finally, total load of the water quality can be calculated by multiplying the concentration by the total volume of discharge. The system was installed in a small experimental forestry watershed to check the performance and know the total load of water quality from the forest. It was found that the system to collect a proportional amount of water to actual discharge operated perfectly and a total load of water quality was analyzed accurately. As the result, it was expected that the system will be very available to know the total load from a non-point source area.

  • PDF

A Study on the Resistivity Structure in Central Myanmar Basin using DC Resistivity and Magnetotellurics (전기비저항 탐사와 자기지전류 탐사 자료를 이용한 미얀마 중앙분지 전기비저항 구조 연구)

  • Noh, Myounggun;Lee, Heuisoon;Ahn, Taegyu;Jang, Seonghyung;Hwang, InGul;Lee, Donghoon;Hwang, Seho
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.2
    • /
    • pp.62-71
    • /
    • 2019
  • We conducted DC resistivity and MT survey to obtain the resistivity structure of the central Myanmar basin. We tried to analyze the underground structure through the resistivity variation of Myanmar by performing representative geophysical survey methods because researches on the electrical resistivity structure are insufficient in Myanmar. The electrical resistivity is expected to be low considering the marine sedimentary rocks composed of shale and sandstone in this area. The DC resistivity and MT survey were carried out using SmartRho of Geolux Co., Ltd. and MTU-5A of Phoenix geophysics Ltd., respectively, to visualize the electrical resistivity structure of study area. DC resistivity and MT survey showed an electrical resistivity less than dozens of ohm-m within the depth of 100 m. In particular, MT survey data were almost similar to TM and TE modes in the frequency range above 1 Hz. The two-dimensional inversion of MT data showed a subsurface structure with low resistivity below 150 ohm-m divided into east-west direction. We confirmed that the inversions of DC resisitivity and MT data along an overlapped survey line represented similar results. In the future, considering the high electrical conductivity, it would be effective to perform DC resistivity and MT survey simultaneously to study the electrical resistivity structure of the central Myanmar basin.

Analysis of Ka Band Satellite Link Budgets and Earth Station G/T in Korea Rainfall Environment (국내 강우 환경에서 Ka 밴드 위성 링크 버짓 및 지구국 G/T 분석)

  • Choi, Hyeong-Jae;You, Kyoung-A;Park, Dae-Kil;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.151-157
    • /
    • 2019
  • In geostationary satellite communications, which are widely used for broadcasting and communication, there is a path loss where the signal power on the path is largely reduced. It is important to consider rain attenuation when calculating link budget because the Ka band frequency is vulnerable to rain attenuation. In this study, rainfall trends were analyzed by using rainfall data from the year 2000 in four regions of Korea (Seoul, Incheon, Busan, Jeju) and the rainfall attenuation was calculated. This was used to analyse the satellite link budget and receiving performance for the down-link of the korea satellite COMS. In this study, the calculated G/T for the rainfall intensity of 0.5% per year using the rainfall data for 18 years increased by approximately $8.5dBK^{-1}$ compared to the ITU's zone-K rain model, and decreased by approximately $1dBK^{-1}$ compared to the precipitation data for 13 years from the TTA(Korea Telecommunications Technology Association). The results of this study can be used for the design of G/T in domestic-installed satellite ground station.

A Study on Smart Soil Resistance Measuring Device for Safety Characterized Ground Design in Converged Information Technology (ICT 융합 환경에서의 안전 특성화 접지 설계를 위한 스마트 대지 저항 측정 기술에 관한 연구)

  • Kim, Hong-Yong;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.203-209
    • /
    • 2019
  • In this work, a new land-specific resistance measuring device (GM) and a measuring probe (Grounding Rod) are connected to the WENNER quadrant as power-line communication (PLC). In groups of two (P1,P2) probes, five to ten probes are installed in series on the ground at intervals of 1m, 2m, 4m, 8m, and 16m, respectively. If the PLC signal from the GMD is detected by the receiver of the Probe 1 (P1) for measurement, the minute voltage and current for measurement flow from the PSD (power supply) attached to the probe to the ground, and then, through the soil between P1 and P2, enters the Probe 1 (P2). The resistance value is then measured by the principle of voltage drop due to ground resistance. Measure the earth resistance every T seconds up to 1 trillion and store the measured data on the Arduino Server mounted on the main equipment. Stored measurement data can be derived from formulas by Ohm's Law and from inherent resistance (here,). Data obtained in real time will be linked to CDGES programs installed on Main PC, enabling data analysis and real-time monitoring of the ground environment on land. In addition, a three-dimensional display is possible with 3D graph support by identifying seasonal characteristics such as temperature and humidity of land (soils). The limitations of the study will require specific application measures of Test Bed for commercial access to a model that has been developed and operated experimentally.

A Study on Location and Space Layout of Traditional House of Jeong Dong-Ho - Focused on the Hyungsei-ron of Pungsu(Fengshui) - (예산 정동호가옥의 입지와 공간배치에 대한 연구 - 풍수 형세론을 중심으로 -)

  • Han, Jong-Koo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.21 no.2
    • /
    • pp.19-26
    • /
    • 2019
  • Pungsu theory is important one in the site selection and lay-out of traditional Korean village and house. In this aspect, Study with a view of Pungsu theory might be used as a proper method for understanding the traditional architecture in Korea. In this context, this study analyzes the Jeong, Dong-Ho's house which is designated no. 19 as an important folk cultural heritage, located in Jigok Ochu-gil 133-62, Godeok-myon, Yesan-gun, Chungnam province. The analysis of the site and space lay-out is carried out by Yong(Dragon), Hyoel(Auspicious Spot), Sa(Sands), Su(Water) aspects of the Pungsu(Fengshui) Hyungsei-ron. The house is depending upon soft dragon vein connecting with a earth type rear mountain. It looks southeast direction, Gonjwasonhyang(乾坐巽向). The hyeolseong(穴星) has classical venus shape, and there is no faults relatively. The Sasinsa condition is almost perfect that right blue dragon and left white tiger surround the hyeol with 3-4 layers and the facing mountain covers the front open area. The water flowing from inside of left and right mountain is joined in front of the house so it could stop flowing out of vital energy. Bibo forest(裨補樹) is placed properly to protect the easy disclose of water outlet. The house is well organized western house(西四宅) by analysis of Dongseosataek-ron(東西四宅論). Through the analysis, I found that the house has good Pungsu(Fengshui) environment fitted with Pungsu Hyungsei-ron. The house composed of small thatched roof is enclosed several times by low hills of back, left and right side. So it is believed that the site might be carefully evaluated by Yong, Hyoel, Sa, Su of Hyeongsei-ron for knowing whether the site condition could minimize the demage by strong winds and protect from the winter cold wind and secure water for drinking and farming and then selected. The method of Pungsu for evaluating the geographical condition of surrounding of a site is used as a traditional site analysis method for evaluating the suitability of long-term well and safe residence.

Analysis of Macrobenthic Community Structure in an Intertidal Flat in Hakseong-ri, Boryeong, Korea (보령 학성리 갯벌 조간대 대형저서동물 군집구조 분석)

  • YANG, DONGWOO;LEE, JUNG-HO;KIM, HARYUN;BAE, HANNA;PARK, JINSOON;KIM, HYE SEON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.3
    • /
    • pp.167-182
    • /
    • 2021
  • This study was carried out to investigate temporal and spatial distribution of macrobenthic community and elucidate effects of environmental factors on change of community structure in an intertidal flat, Hakseong-ri, Boryeong, Korea. Field surveys were seasonally conducted to collect samples of sediment and macrobenthos using can core in triplicate at nine stations in 2016 and 2017. Our results showed that sediment had high mud content (above 60%) in most samples and mean content of loss on ignition was 2.3% in 2016. A total of 79 species was collected in the study site during the study period. Mean density and biomass were 611 ind./m2 and 64.1 gWWt/m2, respectively. Heteromastus filiformis was the dominant species (48.6%, 297 ind./m2) followed by Macrophthalmus japonicus (10.1%, 62 ind./m2) and Upogebia major (6.9%, 42 ind./m2). Three assembly groups resulted from cluster analysis were more distinguished by interaction between organisms and frequency of dominant species than by physical and chemical environment characteristics. In addition, macrobenthic community in the Hakseong intertidal flat showed seasonal changes based on non metric multidimensional scaling using species abundance.