Browse > Article
http://dx.doi.org/10.7780/kjrs.2018.34.6.3.6

Validation of Sea Surface Wind Estimated from KOMPSAT-5 Backscattering Coefficient Data  

Jang, Jae-Cheol (Department of Science Education, Seoul National University)
Park, Kyung-Ae (Department of Earth Science Education, Seoul National University)
Yang, Dochul (Satellite Operation and Application Center, Korea Aerospace Research Institute)
Publication Information
Korean Journal of Remote Sensing / v.34, no.6_3, 2018 , pp. 1383-1398 More about this Journal
Abstract
Sea surface wind is one of the most fundamental variables for understanding diverse marine phenomena. Although scatterometers have produced global wind field data since the early 1990's, the data has been used limitedly in oceanic applications due to it slow spatial resolution, especially at coastal regions. Synthetic Aperture Radar (SAR) is capable to produce high resolution wind field data. KOMPSAT-5 is the first Korean satellite equipped with X-band SAR instrument and is able to retrieve the sea surface wind. This study presents the validation results of sea surface wind derived from the KOMPSAT-5 backscattering coefficient data for the first time. We collected 18 KOMPSAT-5 ES mode data to produce a matchup database collocated with buoy stations. In order to calculate the accurate wind speed, we preprocessed the SAR data, including land masking, speckle noise reduction, and ship detection, and converted the in-situ wind to 10-m neutral wind as reference wind data using Liu-Katsaros-Businger (LKB) model. The sea surface winds based on XMOD2 show root-mean-square errors of about $2.41-2.74m\;s^{-1}$ depending on backscattering coefficient conversion equations. In-depth analyses on the wind speed errors derived from KOMPSAT-5 backscattering coefficient data reveal the existence of diverse potential error factors such as image quality related to range ambiguity, discrete and discontinuous distribution of incidence angle, change in marine atmospheric environment, impacts on atmospheric gravity waves, ocean wave spectrum, and internal wave.
Keywords
Sea surface wind; SAR (Synthetic Aperture Radar); Backscattering coefficient; KOMPSAT-5;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Li, X.M. and S. Lehner, 2014. Algorithm for sea surface wind retrieval from TerraSAR-X and TanDEMX data, IEEE Transactions on Geoscience and Remote Sensing, 52(5): 2928-2939.   DOI
2 Alpers, W. and W. Huang, 2011. On the discrimination of radar signatures of atmospheric gravity waves and oceanic internal waves on synthetic aperture radar images of the sea surface, IEEE Transactions on Geoscience and Remote Sensing, 49(3): 1114-1126.   DOI
3 Businger, J.A., J.C. Wyngaard, Y. Izumi, and E.F. Bradley, 1971. Flux-profile relationships in the atmospheric surface layer, Journal of the Atmospheric Sciences, 28(2): 181-189.   DOI
4 Liu, W.T., K.B. Katsaros, and J.A. Businger, 1979. Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface, Journal of the Atmospheric Sciences, 36(9): 1722-1735.   DOI
5 Liu, W. T. and W. Tang, 1996. Equivalent neutral wind, JPL Publication 96-17, Jet Propulsion Laboratory, Pasadena, CA, USA.
6 Liu, W.T., W. Tang, and P.S. Polito, 1998. NASA scatterometer provides global ocean-surface wind fields with more structures than numerical weather prediction, Geophysical Research Letters, 25(6): 761-764.   DOI
7 Mastin, G.A., 1985. Adaptive filters for digital image noise smoothing: An evaluation, Computer Vision, Graphics, and Image Processing, 31(1): 103-121.   DOI
8 Park, K., P. Cornillon, and D.L. Codiga, 2006. Modification of surface winds near ocean fronts: Effects of Gulf Stream rings on scatterometer (QuikSCAT, NSCAT) wind observations, Journal of Geophysical Research: Oceans, 111(C3).
9 Park, K., J.-J. Park, J.-C. Jang, J.-H. Lee, S. Oh, and M. Lee, 2018. Multi-Spectral Ship Detection Using Optical, Hyperspectral, and Microwave SAR Remote Sensing Data in Coastal Regions, Sustainability, 10(11): 4064.   DOI
10 Paulson, C.A., 1970. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer, Journal of Applied Meteorology, 9(6): 857-861.   DOI
11 Rodriguez, E., R.W. Gaston, S.L. Durden, B. Stiles, M. Spencer, L. Veilleux, R. Hughes, D.E. Fernadez, S.C. Chan, S. Veleva, and R.S. Dunbar, 2009. A scatterometer for XOVWM, the extended ocean vector winds mission, Proc. of 2009 IEEE Radar Conference, Pasadena, CA, May 4-8, pp. 1-4.
12 Crisp, D.J., 2004. The state-of-the-art in ship detection in synthetic aperture radar imagery (No. DSTORR- 0272), Defence Science and Technology Organisation Salisbury (Australia) Info Sciences Lab, Fairbairn, Canberra, Australia.
13 Dyer, A., 1974. A review of flux-profile relationships, Boundary-Layer Meteorology, 7(3): 363-372.   DOI
14 Ebuchi, N., 1999. Statistical distribution of wind speeds and directions globally observed by NSCAT, Journal of Geophysical Research: Oceans, 104 (C5): 11393-11403.   DOI
15 Evans, D., C.L. Conrad, and F.M. Paul, 2003. Handbook of automated data quality control checks and procedures of the National Data Buoy Center, NOAA National Data Buoy Center, Hancock County, Mississippi, USA.
16 Franceschetti, G., M. Migliaccio, and D. Riccio, 1998. On ocean SAR raw signal simulation, IEEE Transactions on Geoscience and Remote Sensing, 36(1): 84-100.   DOI
17 Furevik, B.R. and E. Korsbakken, 2000. Comparison of derived wind speed from synthetic aperture radar and scatterometer during the ERS tandem phase, IEEE Transactions on Geoscience and Remote Sensing, 38(2): 1113-1121.   DOI
18 Graf, J.E., W.Y. Tsi, and L. Jones, 1998. Overview of QuikSCAT mission-a quick deployment of a high resolution, wide swath scanning scatterometer for ocean wind measurement, Proc. of IEEE Southeastcon '98 'Engineering for a New Era', Orlando, FL, pp. 314-317.
19 Han, H., S.H. Hong, H.C. Kim, T.B. Chae, and H.J. Choi, 2017. A study of the feasibility of using KOMPSAT-5 SAR data to map sea ice in the Chukchi Sea in late summer, Remote Sensing Letters, 8(5): 468-477.   DOI
20 Cornillon, P. and K. Park, 2001. Warm core ring velocities inferred from NSCAT, Geophysical Research Letters, 28(4): 575-578.   DOI
21 Singh, P. and R. Shree, 2016. Analysis and effects of speckle noise in SAR images, Proc. of 2016 2nd International Conference on Advances in Computing, Communication, and Automation (ICACCA), Bareilly, India, Sep. 30-Oct. 1, pp. 1-5.
22 Smith, D.M., 1996. Speckle reduction and segmentation of Synthetic Aperture Radar images, International Journal of Remote Sensing, 17(11): 2043-2057.   DOI
23 Tang, W., W.T. Liu, and B.W. Stiles, 2004. Evaluation of high-resolution ocean surface vector winds measured by QuikSCAT scatterometer in coastal regions, IEEE Transactions on Geoscience and Remote Sensing, 42(8): 1762-1769.   DOI
24 Thompson, D.R. and R.C. Beal, 1998. Mapping mesoscale and submesoscale wind fields using synthetic aperture radar, Proc. of 1998 International Geoscience and Remote Sensing Symposium, Seattle, WA, Jul. 6-10, vol. 3, pp. 1382-1384.
25 Vachon, P.W. and F.W. Dobson, 2000. Wind retrieval from RADARSAT SAR images: Selection of a suitable C-band HH polarization wind retrieval model, Canadian Journal of Remote Sensing, 26(4): 306-313.   DOI
26 Villano, M., G. Krieger, and A. Moreira, 2014. Staggered SAR: High-resolution wide-swath imaging by continuous PRI variation, IEEE Transactions on Geoscience and Remote Sensing, 52(7): 4462-4479.   DOI
27 Wang, C., M. Liao, and X. Li, 2008. Ship detection in SAR image based on the alpha-stable distribution, Sensors, 8(8): 4948-4960.   DOI
28 Harahsheh, H.A., 2016. Oil Spill Detection and Monitoring of Abu Dhabi Coastal Zone Using KOMPSAT-5 SAR Imagery, Proc. of XXIII International Society for Photogrammetry and Remote Sensing Congress, Prague, Czech Republic, Jul. 12-19, vol. XLI-B8, pp. 1115-1121.
29 Hwang, J.I., S.H. Chae, D. Kim, and H.S. Jung, 2017. Application of Artificial Neural Networks to Ship Detection from X-Band Kompsat-5 Imagery, Applied Sciences, 7(9): 961.   DOI
30 Kare, J.T., 2001. Moving receive beam method and apparatus for synthetic aperture radar, U.S. Patent No. 6,175,326, Patent and Trademark Office, Washington D.C., USA,.
31 Kim, S.-W., D.-H. Kim, and Y.-K. Lee, 2018. Operational ship monitoring based on integrated analysis of KOMPSAT-5 SAR and AIS data, Korean Journal of Remote Sensing, 34(2): 3327-3338 (in Korean with English abstract).   DOI
32 Koch, W., 2004. Directional analysis of SAR images aiming at wind direction, IEEE Transactions on Geoscience and Remote Sensing, 42(4): 702-710.   DOI
33 Lee, J.S., 1986. Speckle Suppression and Analysis for Synthetic Aperture Radar Images, Optical Engineering, 25: 255636.   DOI
34 Xi, Y., H. Lang, Y. Tao, L. Huang, and Z. Pei, 2017. Four-component model-based decomposition for ship targets using polsar data, Remote Sensing, 9(6): 621.   DOI
35 SIIS, 2015. KOMPSAT-5 product specifications, Korea Aerospace Research Institute, Daejeon, South Korea.
36 Lee, S.R., 2010. Overview of KOMPSAT-5 program, mission, and system, Proc. of 2010 International Geoscience and Remote Sensing Symposium, Honolulu, HI, Jul. 25-30, pp. 797-800.
37 Lehner, S., J. Horstmann, W. Koch, and W. Rosenthal, 1998. Mesoscale wind measurements using recalibrated ERS SAR images, Journal of Geophysical Research: Oceans, 103(C4): 7847-7856.   DOI
38 Li, X., W. Zheng, W.G. Pichel, C.Z. Zou, and P. Clemente-Colon, 2007. Coastal katabatic winds imaged by SAR, Geophysical Research Letters, 34(3).
39 Li, X., J.A. Zhang, X. Yang, W.G. Pichel, M. DeMaria, D. Long, and Z. Li, 2013. Tropical cyclone morphology from spaceborne synthetic aperture radar, Bulletin of the American Meteorological Society, 94(2): 215-230.   DOI
40 Xie, T. and W. Perrie, 2010. Comparison of high winds retrieved from RADARSAT 2 SAR data with in situ buoy data and QuikScat wind vectors, Proc. of SeaSAR 2010 - The 3rd International Workshop on Advances in SAR Oceanography from Envisat and ERS, Frascati, Italy, Jan. 25-29, vol. 679.
41 Zhang, B., W. Perrie, P.W. Vachon, X. Li, W.G. Pichel, J. Guo, and Y. He, 2012. Ocean vector winds retrieval from C-band fully polarimetric SAR measurements, IEEE Transactions on Geoscience and Remote Sensing, 50(11): 4252-4261.   DOI
42 Zhang, B., X. Li, W. Perrie, and Y. He, 2015. Synergistic measurements of ocean winds and waves from SAR, Journal of Geophysical Research: Oceans, 120(9): 6164-6184.   DOI
43 Zhang, G., W. Perrie, X. Li, and J.A. Zhang, 2017. A Hurricane Morphology and Sea Surface Wind Vector Estimation Model Based on C-Band Cross-Polarization SAR Imagery, IEEE Transactions on Geoscience and Remote Sensing, 55(3): 1743-1751.   DOI