• Title/Summary/Keyword: early strength

Search Result 1,657, Processing Time 0.029 seconds

A Strength Analysis of the AGV Structure using the Finite Element Method (유한요소법을 이용한 AGV 구조물의 강도해석)

  • 양영수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.37-42
    • /
    • 1998
  • The important parts of the developing AGV model are the fabrication of each part and the design technology of body frame. In the present day, design of the body frame depends on the experience of the industrial place. the systematic data need for the optimal design of the frame for the case of model change. In this study, the strength of the early stage AGV(Automatic guided vehicle) is examined with the 3-dimensional finite elemnt method. In order to verify the finite element results, the computed results are compared with the experimental data from the strain-gage output. A New model was designed by rmoving some parts of the early staged(roughyly designed) model and choosing the thickness change of the rectangular-pipes.

  • PDF

Examination of Applicability of Repair Mortar using Very High Early Strength Cement (초속경시멘트를 이용한 보수모르터의 현장적용성 검토)

  • Jeon Jin Hwan;Kasai Hiroshi;Yazaki Hideaki;Cho Chung Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.309-312
    • /
    • 2004
  • The hydraulic structure of the hydroelectric power plant such as aqueduct tunnels and the drainage canal became old. Therefore, because the concrete surface of the aqueduct tunnel has received severe damage by wear-out and the crack etc the repair is demanded. This research examined the applicability of the repair mortar which mixed the fly ash and an artificial aggregate by using the very high early strength cement. As a result, good Quality repair mortar which satisfied the demand performance more than self-flow 270mm and compressive strength $50N/mm^2$ (age of 28days) adjusting of water cement ratio by using the MTX cement be able to be manufactured.

  • PDF

The study on annual evaluation of CO2 and general economic for precast concrete without steam curing (증기양생이 불필요한 프리캐스트 콘크리트의 연간 CO2 저감량 및 경제성 평가)

  • Sung, Myung Jin;Min, Tae-Beom;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.42-43
    • /
    • 2013
  • Nowadays, Precast Concrete is adopted on most of construction, because of shortening construction period and good quality. In precast concrete, steam curing is necessary for getting proper strength, but it causes much CO2 and economc. Therefore, on this study, by using type III cement and hardening accelerator, early compressive strength was shown 13MPa for 6hr. From the result, removal form could be shorten. Furthermore, annual CO2 was reduced as much as 24% and also annual cost was decreased as much as 12%.

  • PDF

The Characteristics of the Change in dry Contraction Length of Dry Mortar for Each Cosmetic Period using an Improved Durometer (개량형 Durometer를 활용한 미장시기별 Dry Mortar의 건조수축 길이변화 특성)

  • Han, Soo-Hwan;Hyun, Seung-Yong;Hwang, Yin-seung;Yoon, Chi-Whan;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.190-191
    • /
    • 2021
  • This study is conducted to provide a method to estimate the setting time and early age compressive strength using D type durometer.Test results indicated that the use of D type Durometer attached with modified needle, which was designed to secure improved accuracy in setting and compressive strength, enables to estimate setting time and the compressive strength at early age.

  • PDF

The Study for Development on Earlier Evaluation Instrument of Strength of Concrete -An Experimental Study on Compressive Strength of Mortar Using Resistance Method- (콘크리트 강도 조기 판정기의 개발에 관한 연구 (2) 전기 저항법을 이용한 모르타르의 압축강도에 관한 실험적 연구)

  • 이도헌;윤상천;김화중;박정민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.441-446
    • /
    • 1994
  • In this study proposed to rapid and simple test method for early decision of quality of concrete. As the this paper is experimental study for compressive strength of mortar using resistance method, the obtained results are summarized as follow ; $\circled1$ The resistance ratio was decreased as the incement of water-cement ratio $\circled2$ The compressive strength presented to the tendency of increment as resistance ratio is increaing

  • PDF

The Study on Earlier Evaluation of Strength for Cement Using resistance Method (전기 저항법을 이용한 시멘트 강도의 조기 판정에 관한 연구)

  • 김화중;박정민;김태곤;최신호;이승조
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.124-129
    • /
    • 1995
  • In this study proposed to rapid and simple methid of test for early evaluation of strength of cement. The obtained results through a series of experiment are summarized as follow. The resistance ratio was decreased as the increase of water-cement ratio. The compressive strength of cement was increased as the resistance ratio increase. The experimental results of compressive strength of cement is shown in the same value no relation with the kind of cement respectively.

  • PDF

Strength Properties of Calcium-aluminate based Foamed Concrete according to Replacement Ratio of GGBFs (고로슬래그 혼입율에 따른 CA계 기포콘크리트의 강도특성)

  • Yu, Jae-Seong;Choi, Sun-Mi;Choi, Hong-Bum;Li, Mao;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.39-40
    • /
    • 2016
  • The aim of this research was evaluating strength characteristics of foamed concrete using Ladle Furnace slag with GGBFs. For all mixtures, because of the early setting and strength development, it was possible to deform the formwork and measure the compressive strength within 3 hours.

  • PDF

The Mechanical Properties of High Strength Concrete in Massive Structures

  • Park, Ki-Bong
    • Architectural research
    • /
    • v.15 no.1
    • /
    • pp.53-58
    • /
    • 2013
  • High strength concrete is being used increasingly in mass structure projects. The purpose of this study is to investigate the influence of temperature during mixing, placing and curing on the strength development, hydration products and pore structures of high strength concrete in mass structures. The experiments were conducted with two different model walls, viz.: 1.5 m and 0.3 m under typical summer and winter weather conditions. The final part of this study deal with the clarification of the relationship between the long-term strength loss and the microstructure of the high strength concrete at high temperatures. Test results indicated that high elevated temperatures in mass concrete structures significantly accelerate the strength development of concrete at the early ages, while the long-term strength development is decreased. The long-term strength loss is caused by the decomposition of ettringite and increased the total porosity and amount of small pores.

Application of internet of things for structural assessment of concrete structures: Approach via experimental study

  • D. Jegatheeswaran;P. Ashokkumar
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Assessment of the compressive strength of concrete plays a major role during formwork removal and in the prestressing process. In concrete, temperature changes occur due to hydration which is an influencing factor that decides the compressive strength of concrete. Many methods are available to find the compressive strength of concrete, but the maturity method has the advantage of prognosticating strength without destruction. The temperature-time factor is found using a LM35 temperature sensor through the IoT technique. An experimental investigation was carried out with 56 concrete cubes, where 35 cubes were for obtaining the compressive strength of concrete using a universal testing machine while 21 concrete cubes monitored concrete's temperature by embedding a temperature sensor in each grade of M25, M30, M35, and M40 concrete. The mathematical prediction model equation was developed based on the temperature-time factor during the early age compressive strength on the 1st, 2nd, 3rd and 7th days in the M25, M30, M35, and M40 grades of concrete with their temperature. The 14th, 21st and 28th day's compressive strength was predicted with the mathematical predicted equation and compared with conventional results which fall within a 2% difference. The compressive strength of concrete at any desired age (day) before reaching 28 days results in the discovery of the prediction coefficient. Comparative analysis of the results found by the predicted mathematical model show that, it was very close to the results of the conventional method.