Let $\mathbb{N}_0$ be the set of non-negative integers, and let P(n, l) denote the set of all weak compositions of n with l parts, i.e., $P(n,l)=\{(x_1,x_2,{\cdots},x_l){\in}\mathbb{N}^l_0\;:\;x_1+x_2+{\cdots}+x_l=n\}$. For any element $u=(u_1,u_2,{\cdots},u_l){\in}P(n,l)$, denote its ith-coordinate by u(i), i.e., $u(i)=u_i$. A family $A{\subseteq}P(n,l)$ is said to be t-intersecting if ${\mid}\{i:u(i)=v(i)\}{\mid}{\geq}t$ for all $u,v{\epsilon}A$. A family $A{\subseteq}P(n,l)$ is said to be trivially t-intersecting if there is a t-set T of $[l]=\{1,2,{\cdots},l\}$ and elements $y_s{\in}\mathbb{N}_0(s{\in}T)$ such that $A=\{u{\in}P(n,l):u(j)=yj\;for\;all\;j{\in}T\}$. We prove that given any positive integers l, t with $l{\geq}2t+3$, there exists a constant $n_0(l,t)$ depending only on l and t, such that for all $n{\geq}n_0(l,t)$, if $A{\subseteq}P(n,l)$ is non-trivially t-intersecting, then $${\mid}A{\mid}{\leq}(^{n+l-t-l}_{l-t-1})-(^{n-1}_{l-t-1})+t$$. Moreover, equality holds if and only if there is a t-set T of [l] such that $$A=\bigcup_{s{\in}[l]{\backslash}T}\;A_s{\cup}\{q_i:i{\in}T\}$$, where $$A_s=\{u{\in}P(n,l):u(j)=0\;for\;all\;j{\in}T\;and\;u(s)=0\}$$ and $$q_i{\in}P(n,l)\;with\;q_i(j)=0\;fo\;all\;j{\in}[l]{\backslash}\{i\}\;and\;q_i(i)=n$$.