Browse > Article
http://dx.doi.org/10.4134/BKMS.2015.52.3.1007

AN ANALOGUE OF THE HILTON-MILNER THEOREM FOR WEAK COMPOSITIONS  

Ku, Cheng Yeaw (Department of Mathematics National University of Singapore)
Wong, Kok Bin (Institute of Mathematical Sciences University of Malaya)
Publication Information
Bulletin of the Korean Mathematical Society / v.52, no.3, 2015 , pp. 1007-1025 More about this Journal
Abstract
Let $\mathbb{N}_0$ be the set of non-negative integers, and let P(n, l) denote the set of all weak compositions of n with l parts, i.e., $P(n,l)=\{(x_1,x_2,{\cdots},x_l){\in}\mathbb{N}^l_0\;:\;x_1+x_2+{\cdots}+x_l=n\}$. For any element $u=(u_1,u_2,{\cdots},u_l){\in}P(n,l)$, denote its ith-coordinate by u(i), i.e., $u(i)=u_i$. A family $A{\subseteq}P(n,l)$ is said to be t-intersecting if ${\mid}\{i:u(i)=v(i)\}{\mid}{\geq}t$ for all $u,v{\epsilon}A$. A family $A{\subseteq}P(n,l)$ is said to be trivially t-intersecting if there is a t-set T of $[l]=\{1,2,{\cdots},l\}$ and elements $y_s{\in}\mathbb{N}_0(s{\in}T)$ such that $A=\{u{\in}P(n,l):u(j)=yj\;for\;all\;j{\in}T\}$. We prove that given any positive integers l, t with $l{\geq}2t+3$, there exists a constant $n_0(l,t)$ depending only on l and t, such that for all $n{\geq}n_0(l,t)$, if $A{\subseteq}P(n,l)$ is non-trivially t-intersecting, then $${\mid}A{\mid}{\leq}(^{n+l-t-l}_{l-t-1})-(^{n-1}_{l-t-1})+t$$. Moreover, equality holds if and only if there is a t-set T of [l] such that $$A=\bigcup_{s{\in}[l]{\backslash}T}\;A_s{\cup}\{q_i:i{\in}T\}$$, where $$A_s=\{u{\in}P(n,l):u(j)=0\;for\;all\;j{\in}T\;and\;u(s)=0\}$$ and $$q_i{\in}P(n,l)\;with\;q_i(j)=0\;fo\;all\;j{\in}[l]{\backslash}\{i\}\;and\;q_i(i)=n$$.
Keywords
cross-intersecting family; Hilton-Milner; $Erd{\ddot{o}}s$-Ko-Rado; weak compositions;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Ahlswede and L. H. Khachatrian, The complete intersection theorem for systems of finite sets, European J. Combin. 18 (1997), no. 2, 125-136.   DOI   ScienceOn
2 R. Ahlswede and L. H. Khachatrian, The diametric theorem in Hamming spaces - optimal anticodes, Adv. in Appl. Math. 20 (1998), no. 4, 429-449.   DOI   ScienceOn
3 C. Bey, On cross-intersecting families of sets, Graphs Combin. 21 (2005), no. 2, 161-168.   DOI
4 P. Borg, Extremal t-intersecting sub-families of hereditary families, J. London Math. Soc. 79 (2009), no. 1, 167-185.   DOI
5 P. Borg, On t-intersecting families of signed sets and permutations, Discrete Math. 309 (2009), no. 10, 3310-3317.   DOI   ScienceOn
6 P. Borg and F. C. Holroyd, The Erdos-Ko-Rado property of various graphs containing singletons, Discrete Math. 309 (2009), no. 9, 2877-2885.   DOI   ScienceOn
7 F. Brunk and S. Huczynska, Some Erdos-Ko-Rado theorems for injections, European J. Combin. 31 (2010), 839-860.   DOI   ScienceOn
8 P. J. Cameron and C. Y. Ku, Intersecting families of permutations, European J. Combin. 24 (2003), no. 7, 881-890.   DOI   ScienceOn
9 A. Chowdhury and B. Patkos, Shadows and intersections in vector spaces, J. Combin. Theory Ser. A 117 (2010), no. 8, 1095-1106.   DOI   ScienceOn
10 M. Deza and P. Frankl, On the maximum number of permutations with given maximal or minimal distance, J. Combin. Theory Ser. A 22 (1977), no. 3, 352-360.   DOI
11 D. Ellis, Stability for t-intersecting families of permutations, J. Combin. Theory Ser. A 118 (2011), no. 1, 208-227.   DOI   ScienceOn
12 D. Ellis, E. Friedgut, and H. Pilpel, Intersecting families of permutations, J. Amer. Math. Soc. 24 (2011), no. 3, 649-682.   DOI   ScienceOn
13 K. Engel and P. Frankl, An Erdos-Ko-Rado theorem for integer sequences of given rank, European J. Combin. 7 (1986), no. 3, 215-220.   DOI
14 P. Erdos, C. Ko, and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961), 313-320.   DOI
15 P. Frankl, The Erdos-Ko-Rado theorem is true for n = ckt, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, pp. 365-375, Colloq. Math. Soc. Jnos Bolyai, 18, North-Holland, Amsterdam-New York, 1978.
16 P. Frankl and Z. Furedi, Nontrivial intersecting families, J. Combin. Theory Ser. A 41 (1986), no. 1, 150-153.   DOI
17 A. J. W. Hilton and E. C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 18 (1967), 369-384.   DOI
18 P. Frankl and N. Tokushige, On r-cross intersecting families of sets, Combin. Probab. Comput. 20 (2011), no. 5, 749-752.   DOI
19 P. Frankl and R. M. Wilson, The Erdos-Ko-Rado theorem for vector spaces, J. Combin. Theory Ser. A 43 (1986), no. 2, 228-236.   DOI
20 C. Godsil and K. Meagher, A new proof of the Erdos-Ko-Rado theorem for intersecting families of permutations, European J. Combin. 30 (2009), no. 2, 404-414.   DOI   ScienceOn
21 A. J. W. Hilton and C. L. Spencer, A graph-theoretical generalisation of Berges analogue of the Erdos-Ko-Rado theorem, Trends in Graph Theory, Birkhauser Verlag, Basel, Switzerland (2006), 225-242.
22 F. C. Holroyd, C. Spencer, and J. Talbot, Compression and Erdos-Ko-Rado graphs, Discrete Math. 293 (2005), no. 1-3, 155-164.   DOI   ScienceOn
23 F. C. Holroyd and J. Talbot, Graphs with the Erdos-Ko-Rado property, Discrete Math. 293 (2005), no. 1-3, 165-176.   DOI   ScienceOn
24 G. Hurlbert and V. Kamat, Erdos-Ko-Rado theorems for chordal graphs and trees, J. Combin. Theory Ser. A 118 (2011), no. 3, 829-841.   DOI   ScienceOn
25 P. Keevash, Shadows and intersections: Stability and new proofs, Adv.Math. 218 (2008), no. 5, 1685-1703.   DOI   ScienceOn
26 C. Y. Ku and I. Leader, An Erdos-Ko-Rado theorem for partial permutations, Discrete Math. 306 (2006), no. 1, 74-86.   DOI   ScienceOn
27 C. Y. Ku and D. Renshaw, Erdos-Ko-Rado theorems for permutations and set partitions, J. Combin. Theory Ser. A 115 (2008), no. 6, 1008-1020.   DOI   ScienceOn
28 C. Y. Ku and K. B. Wong, An analogue of the Erdos-Ko-Rado theorem for weak compositions, Discrete Math. 313 (2013), 2463-2468.   DOI   ScienceOn
29 C. Y. Ku and K. B. Wong, On cross-intersecting families of set partitions, Electron. J. Combin. 19 (2012), no. 4, 9 pp.
30 C. Y. Ku and K. B. Wong, On r-cross intersecting families of sets, Far East J. Math. Sci. 75 (2013), 295-300.
31 C. Y. Ku and K. B. Wong, An analogue of Hilton-Milner theorem for set partitions, J. Combin. Theory Ser. A 120 (2013), 1508-1520.   DOI   ScienceOn
32 C. Y. Ku and K. B. Wong, On r-cross t-intersecting families for weak compositions, preprint.
33 C. Y. Ku and K. B. Wong, An Erdos-Ko-Rado theorem for permutations with fixed number of cycles, Electron. J. Combin. 21 (2014), no. 3, #P3.16.
34 C. Y. Ku and T. W. H. Wong, Intersecting families in the alternating group and direct product of symmetric groups, Electron. J. Combin. 14 (2007), no. 3, 9 pp.
35 B. Larose and C. Malvenuto, Stable sets of maximal size in Kneser-type graphs, European J. Combin. 25 (2004), no. 5, 657-673.   DOI   ScienceOn
36 Y.-S. Li and Jun Wang, Erdos-Ko-Rado-type theorems for colored sets, Electron. J. Combin. 14 (2007), no. 1, 9 pp.
37 M. Matsumoto and N. Tokushige, The exact bound in the Erdos-Ko-Rado theorem for cross-intersecting families, J. Combin. Theory Ser. A 52 (1989), no. 1, 90-97.   DOI
38 A. Moon, An analogue of the Erdos-Ko-Rado theorem for the Hamming schemes H(n, q), J. Combin. Theory Ser. A 32 (1982), no. 3, 386-390.   DOI
39 N. Tokushige, A product version of the Erdos-Ko-Rado theorem, J. Combin. Theory Ser. A 118 (2011), no. 5, 1575-1587.   DOI   ScienceOn
40 L. Pyber, A new generalization of the Erdos-Ko-Rado theorem, J. Combin. Theory Ser. A 43 (1986), no. 1, 85-90.   DOI
41 J. Wang and H. Zhang, Cross-intersecting families and primitivity of symmetric systems, J. Combin. Theory Ser. A 118 (2011), no. 2, 455-462.   DOI   ScienceOn
42 J. Wang and S. J. Zhang, An Erdos-Ko-Rado-type theorem in Coxeter groups, European J. Combin. 29 (2008), no. 5, 1112-1115.   DOI   ScienceOn
43 R. M. Wilson, The exact bound in the Erdos-Ko-Rado theorem, Combinatorica 4 (1984), no. 2-3, 247-257.   DOI
44 R. Woodroofe, Erdos-Ko-Rado theorems for simplicial complexes, J. Combin. Theory Ser. A 118 (2011), no. 4, 1218-1227.   DOI   ScienceOn